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E

The Impact of ‘Meaning’ on Students’ Ability to Negate Statements

_ Tony Barnard
King’s College London

This paper reports on a study to investigate students’ capabilities for handling
logical structures in mathematics, in particular in negating statements
involving quantifiers. Undergraduates, both at early and later stages of a
university course, were asked to negate a varleiy of statements set in everyday
and mathematical contexts. It was found that, even after two years at
university, one in three students could not negate apparently simple -
statements. Comparison of the performances of the two groups showed that the
ways in which tlﬁz differed reﬁ)ected characteristics of the parallel transitions
in the nature ofy the mathematics encountered and in the intellectual
development of the students.

Introduction

Mathematical discourse at university is permeated with structures of the form “Suppose
A is not true. This is the same as saying that B is true”. Consideration of equivalent ways
of expressing the falsity of a given statement, such as “for all x > 0, a < x” or “p divides
ab implies p divides a or p divides b”, occurs abundantly in both exposition and
construction of mathematical proofs. Thus the ability to negate statements correctly is
fundamental to meaningful mathematical communication at this level. Students who
have difficulty with such structures may willingly accept, learn and reproduce instances
of these in a mathematical argument, but they will be missing the point of such an
argument in that it will have contributed little to their overall understanding of what is
going on in the mathematics. ‘

In an attempt to gain insight into the difficulties students have with ‘negations’, lists of
statements of the following kinds were drawn up.

. x satisfies P, for all x in X.

. x satisfies P, for some x in X.

x and y satisfy P,

. x satisfies P and Q, for all x in X.

. A implies B.

. There exists x in X such that S(x,y) is true for all y in Y.

. Given x in X, there exists y in ¥ such that S(xz) is true for all z in Z (the
- ‘limit’ definition structure).

N A W~

These statements were set both in everyday contexts and mathematical contexts, and
students were tested on their ability to negate therh. The students were drawn from two
groups: students in the first term of their first year, and a mixed group of second and
third year students who had completed at least one year of formal mathematics.
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The most notable finding was perhaps the sheer number of wrong answers, even with
what many lecturers would regard as “just common sense”. Thus for statements 2, 3 and
4, generally less than half of the first year students tested gave the correct answer. For -
statement 6, the number of correct answers was less than 1 in 4. The performance of the
second and third year students was markedly better: generally 2 in 3 correct for each of
statements 2, 3 and 4, and just under half correct for statement 6. However, the
prevalence of such errors among students engaging with the more advanced mathematics
of an undergraduate course was still far from ideal.

Subsequent interviews with students and consideration of the most common incorrect

answers suggest that among the underlying causes of difficulty in performing negations
are the following: :

* logical structure,

+ lexical representation (language, symbols),
+ contextual influences,

+ level of abstraction,

+ degree of complexity.

It will be argued that ability to cope with these difficulties is related to progress in the

transition from a descriptive view of mathematics, grounded in a practical domain in

which objects and meanings of words are the dominant constructs, to one of definition -
and deduction, grounded in a theoretical domain in which symbols and words themselves

. are predominant. This aspect of mathematical ability is discussed in (Tall, 1994).

The test

Six lecturers in the mathematics department of a UK university were asked to run the test.
with their classes in the first term of the academic year. The total numbers of students
involved were 78 from the first year and a further 78 from the second/third years. Before
distributing the papers, the lecturers gave an explanation/reminder of the meaning of the
word ‘negation’, following a prepared briefing sheet of notes and examples. Each

student was then given a paper containing the followmg three sets of questlons (figures
1,2,3).

12
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For each of the following statements, circle the letter beside the statement below it
which is its negation.

All people living in Ché&ltenham watch ‘Neighbours’.
No people living in Cheltenham watch ‘Neighbours’.

Some people living in Cheltenham watch ‘Neighbours’.

All people living in Cheltenham don’t watch ‘Neighbours'.
Some people living in Cheltenham don’t watch ‘Neighbours’.

Some students stay awake at lunchtime.

All students stay awake at lunchtime.

Some students fall asleep at lunchtime.

No students fall asleep at lunchtime.

All students fall asleep at lunchtime. \

Linford Christie and Sally Gunnell can run fast. '
Linford Christie and Sally Gunnell cannot run fast.

Neither Linford Christie nor Sally Gunnell can run fast.

Either Linford Christie or Sally Gunnell or both can run fast.

Either Linford Christie or Sally Gunnell or both cannot run fast.

Long John Silver always has a briefcase and an umbrella.

Long John Silver is sometimes either without a briefcase or without an umbrella or without both.
Long John Silver is always either without a briefcase or without an umbrella or without both.
Long John Silver is sometimes without a briefcase and without an umbrella.

Long John Silver is always without a briefcase and without an umbrella.

What goes up must come down.

What goes down must come up.

What goes up must stay up.

If something doesn’t £0 up, it needn’t come down.
If something goes up, it needn’t come down.

There is a station on the London Underground whose name contains no letters of
the word ‘MACKEREL’.

There is a stanon on the London Underground whose name contains some letters of the word
‘MACKEREL’

There is a station on the London Underground whose name contains all the letters of the word
‘MACKEREL’.

There is no station on the London Underground whose name contains al] the letters of the word
‘MACKEREL’.

For any station on the London Underground, there is a letter of the word ‘MACKEREL’ which
is not in the name of the station. .
For any station on the London Underground, there is a letter of the word ‘MACKEREL’ which
is also in the name of the station.

For any lecture room, there is a time of day such that all students able to attend

lectures at that time can fit into the room.

There is a lecture room such that, for any time of day, there are students able to attend lectures
at that time who cannot fit into the room.

There is a lecture room such that, for any time of day, all students able to attend lectures at that
time can fit into the room.

For any lecture room and any time of day, there are students able to attend lectures at that time
who cannot fit into the room.

For any lecture room, there is a time of day for which there are students able to attend lectures
at that time who cannot fit into the room.
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Figure 1 : Negating statements in everyday contexts
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For each of the following statements, circle the letter beside the statement below it
which is its negation.
2.1 Forall integers a, a2 2 0.
A. There does not exist an integer a satisfying a2 20
B.- a? <0 for all integers a.
" C. There exists an integer g such that a2 <0.
D. There exists an integer a such that a2 2 0.
2.2 There exists a real number x such that log(x) = -1.
A. There exists a real number x such that log(x) = -1.
B. There does not exist a real number x such that log(x) # -1.
C. Log(x) =-1 for all real numbers x.
D. Log(x) -1 for all real numbers x.
23 Sin(x)>0-1 and cos(y) <09,
A. Sin(x) £0-1 and cos(y) <0-9.
B. Sin(x)<0-1 and cos(y)20-9.
C. Sin(x) £0-1 or cos(y) 2 0-9.
D. Sin(x)>0-1 orcos(y) <0-9.
24 Forallxe X,x221and 23 <8.
A. Givenx € X,eitherx2 <lorx3>8.
B. Thereexists x € X such that either x2 < 1 or 3 > 8.
C. There exists x € X such that x2 < 1 and x3 > 8.
D. Forallxe X,x2<1landx3>8.
25 Hfu>7, thenv=3.
A - ffu<7, thenv =3,
‘B. lfu>7,thenv#3.
C. ‘u>7 does notimply ‘v=3".
D. ‘u<7 does not imply ‘v=3".
2.6 There exists a positive integer m such that m + n 2 5 for all positive integers n.
A. Given any positive integer m, there exists a positive integer n such that m+ n <3.
B. Given any positive integer m, there exists a positive integer n such that m+n235.
C. There exist posmve mtegers m and n such that m+ n<35.
D. There does not exist a positive integer m such that m + n < 5 for all positive integers n.
E. There exists a positive integer m such that m+ n < 5 for all positive integers n.
2.7 Given a prime number p, there exists an integer x such that pa < x for all positive
integers a. o
A. There exists a prime number p such that, for any integer x, there is a positive integer a
satisfying pa <x.
B. There exists a prime number p such that, for any integer x, there is a positive integer a
satisfying pa 2 x.
C. Givena prime number p and an mteger x, there exists a positive integer a such that pa 2 x.
D. Given a prime number p, there exists an integer x such that pa 2 x for some positive integer a.
Figure 2 : Negating statements in mathematical contexts
O

ERIC 2—6

Aruitoxt provided by Eic:



For each of the following statements, write its negation in the space below it.
3.1 All people living in Neasden have black hair.
32 Some TV programmes are good.
3.3 Kylie Minogue and the Loch Ness Monster can sing.
3.4 Donald Duck always wears glasses and a hat
3.5 Where there’s a will, there’s a way.

3.6 There is a tree in England whose number of leaves is not equal to the number of
words in any book.

3.7 For any textbook, there is a price above which the number of students who can
afford the book is less than the number of copies in the bookshop.

Figure 3 : Formulating the negation of statements

Responses of the students

In each of the boxes in the tables below, the upper italic figure relates to the first year
students and the lower figure relates to the second and third year students.

1] 2] 3] 4]s51]6]7
. S8 | 46 | 44 | 37 |60 | 2¢ | 22
Section 1 81 | 76 | 65 | 60 | 68 | 49 | s0
. 53|50 | 33| 42 |32] 18]
Section 2 73| 65| 67| 65| 50| a2 | aa
Section 3 60 |62 | 35 | 31| 33| 22| 12
822 | 79 [ 69 | 54 | 55| 32| 20

Table 1 : Percentage of students giving correct response to each section

L1213 1afis Jie [ 1721 [22]23 24252627
A 7| 10] 5T 20 s[2s[as| s s 2[10] 15T 14
st s| 6|ar| 6|11 {30 o 13| 3] a| 8| 33| 7
g |27 2| 71| o 217263329 7] a1
alw]7| 8| 8| 7| 3w ] 7|s1]| 18] a| 34
c W) «f 2l ]zl izl ar| 7T rzf2s| s[5
s| 3| 3| of o]l 8 57| 2| s2| 11| 39| 8] 8
p (#3632 a]| s|27] 7] 30| 9] 20| of26] 2
: 63| 59| s1|10|s3] 6| 6ff 2|51 4| 10] 12| 13] 14
19 17
E 38 ' 14

Table 2 : Number of students choosing each option (N=78)
(correct responses in bold)
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The most common underlying error was that of negating a single part of the statement
which had, for the student, a dominating presence. For the statements set in everyday -
contexts, this point of focus was often the section of the main verb. For example, in 1.2,
by far the most common error was to solely convert “stay awake” to “fall asleep”.
However, in 2.2, where the section corresponding to “stay awake” was the less tangible’
“log(x) = —1”, the errors were more evenly distributed between solely converting “log(x)
=-1" to “log(x) # —1” and solely converting “There exists” to “There does not exist”.
Similarly, in 1.6, 53% of the first year students and 23% of the second year students
solely converted “contains no letters” to either “contains some letters” or “contains all
letters”, whereas in-2.6 the logically corresponding errors, C and E, were exceeded in
popularity by the error of choosing D, the statement which converted “There exists” to:
“There does not exist” as well as “m + n > 5" to “m + n < 5”. This behaviour was also
widespread in section 3 where the students had to construct their own statement. For thic
negation of 3.6, 21% of the first year students changed only “not equal” to “equal”, and
even a very high proportion of the ‘correct’ answers consisted merely of the replacement
of “a” by “no” after “There is”. , :

Where students operated on one component of the statement with no relation to the
others, and this was not a negation of the-main verb, it was usually a transposition of two
quantifiers. On being asked why they were focussing on just one part of the statement,
typical student responses were “I was going for something a bit different”, “I just want to
make it not true ... minimum statement to make it false”. This is the kind of behaviour
that might be expected from students operating in the unifocal (Case, 1985), or
unistructural (Biggs and Collis, 1982), mode of a developmental stage.

A possible explanation could be related to the opposing needs for coming to a
conclusion, and for conclusions to be consistent. Students operating at a higher level of
sophistication, for whom consistency was a factor of relative concern, were less likely to
jump to hasty conclusions.As might be expected, the students’ difficulties were greater
with those statements which were more complex logically, such as statements 6 and 7
which were longer and had more than one quantifier. With a short term working memory
of limited capacity, successful operation with these statements may require a chunking
strategy and/or use of symbolic notation to mentally compress the components. As one
student put it, “I think there was too much in that one”! However there were also
complexities not related to logical structure. For example, “stay awake at lunchtime” in
1.2 was more complex linguistically than “are good” in 3.2. This variation was likely to
be less significant to students more proficient in abstract reasoning, and could partially
explain the different relative performances of the two groups at 1.2 and 3.2. For the first
year students the percentage of correct answers for 3.2 was 35% greater than that for 1.2,
while for the second and third year students the corresponding figure was only 4%.

o 16
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Contextﬁal influences . . -

It will be noticed that the increases in success rates of the second and third year students
over the first year students for the first four statements of each section were greater for

. sections 1 and 3, where the statements were set in everyday contexts, than they were for

section 2, where they were set in mathematical contexts. (The increase for 3.2, which
was slightly less than that for 2.2, may be related to the remarks of the previous
paragraph.) -

A possible explanation for these phenomena may lie in the role played by truth value
Students with less facility in abstract reasoning are generally less able to throw off the
‘real world’ true/false dimension when contemplating a given statement. For example,

" they are more comfortable writing down a statement they know to be true than one

which they know to be false. A student comment on 1.5 and 3.5 was “I found them hard
because they were phrases that you knew”. For such students, more grounded in the .
practical than in the theoretical domain, the truth or falsity of a statement was a matter of
relative importance and probably had a greater influence on their perfomances at
negating statements than it did for students with a greater facility in abstract reasoning.
Furthermore, this differential effect was likely to be greater with statements set in
concrete everyday contexts than with more abstract statements where, for students whose
abstract thought was more fragile, the true/false dimension had less immediacy.

Relative difficulties with statements set in everyday contexts and those set in
mathematical contexts with concise symbols were also reflected in the following

‘contrasting student remarks. While discussing her difficulty with 2.7, one student said,

“It is harder with numbers than with the worded sentences because you've got the
mathematical language as well, that you have to be thinking of. At the same time you
have to think what pa < x actually is, rather.than in the common sense case.” On the
other hand a second student, whose best performance was on sheet 2, said, “(There was)
less to keep in mind”.

There is one final statistic which, though not surprising, does have its  merits. Five
lecturers were also given the 21 statements. While the percentage of students who gave
correct answers in all 21 cases was 1%, the percentage of lecturers who achxeved thxs
was 100% !

Conclusion

Although the statements were chosen to have the same logical structure from section to
section, there was no significant correlation of logical structure in the students’
responses. The error patterns that did emerge arose rather from factors such as (a)
complexity, (b) single, or unrelated multiple, operations, and (c) links with meaning via
dominiant phrases and truth value. For students at an early stage of development in
detached theoretical thinking, the various components of a statement were likely to have
attached weightings of importance, or presence, derived from a network of associations

and meanings in their base of experience. They were less able to shake off logically
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irrelevant associations than students who had progressed further in the transition to the
stage where it is the weightless words themselves which are the dominant feature.
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A Study on the Secondary Teaching System
about the Concept of Limit

Lorena Espinoza and Carmen Azcérate

‘Mathematics Education Department
Universidad Auténoma de Barcelona, Spain

The mathematical knowledge of limit’ and the transformations it undcrgoces in order to be
taught are studicd in this paper; also, the mathematical activities performed with limits and
the mathematical modcls used around this concept are described. The resulls obtained in this
phase make an analytical instrument to allow us to approach in betier conditions the teachers’
knowledges and teaching methodologies, so that some didactic phenomena which are present in
secondary teaching and learning of limits can be identified, ezplained and even predicted.

1 Introduction

The present report accounts for the results of the first part of a research aiming to study ‘the
mathematical secondary teaching system for the concept of limit.

Most researches undertaken in mathematics teaching related to this concept have focused on
the study of the students’ conceptions and on the epistemological problems linked to its learning
process. Especially remarkable in this area are the works by B. Cornu, 1985 and A. Sierpinska,
1987, [51,[6],[7,[8),[14},[19},[20},[21},{22],[23]. Our own research has been developed under a
systemic standpoint and out of the three main components of the complete teaching system,
i.e., knowledges, teacher and pupil [13}, it mainly focuses on "the mathematical knowledge of
limit’ itself” and on "the teacher”.

This work follows a research line which takes mathematics education as "the science of the
specific conditions for conveying those mathematical knowledges which are useful for human
institutions to operate” (Brousseau, 1993). In this view, it is concerned with the study of
mathematical knowledge involved and with the transformations it undergoes in order to be
taught, as well as with the mechanisms and operations employed for the mentioned conveying
[2], [4]. Here is where the variable Teacher assumes a remarkable importance since it is her /him
who will, in the end, transmit to the pupil the decisions taken towards a teaching goal by the
institution [4].

2 The Conceptual Framework

We take as a starting point the fact that in order to understand and interpret how the sys-
tem of mathematical education works, how disfunctions are generated and developed within
it, and also how to detect some didactic phenomena, it is first necessary to study the mathe-
matical knowledge actually taught by the teaching systems [6]. To this purpose, the specific

19
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mathematical activity carried out by the didactic systems has to be analysed. This implies
selecting an epistemological model for the mentioned activity [15]. In our hereby account, we
use the anthropological model of the mathematical activity proposed by Chevallard [11], or
more generally, of the institutionalised mathematical practices, the onc which considers them

as a human activity of studying the domain of mathematical problems, putting forth an
interrelation between creation and evolution of the problems’ domains, the building of mathe-
matics study techniques and the recursive development of the associated theories. Furthermore,
we use some concepts of the theory of didactic transposition [9], of the relationship with knowl-
edge [10] and of the didactic momentums [13], as analytical tools, as developed by the same
author. ’

The kernel theory which supports this standpoint considers that mathematics actually
taught at school is different from the one built up or used by the specialists; this late en-
during a series of transformations and adaptations in order to be taught [9], [16]. The distance’
between an object of mnathematical knowledge and its "corr&spondént" teaching object is often
very large and, cven some times surprising. Without the analysis of the mathematical knowl-
edge actually taught and not having in hand good and explicit epistemological models which
would allow this analysis, it comes to be very difficult to visualise any phenomena, and any
didactic phenomena, in particular {1}, [4], [15].

3 Design of the Study Program for Research -

During the phase of the work we are presenting here, the strategy aimed at analysing the
mathematical activity developed about limits in secondary education textbooks, as related to
the concept of limit, targeting at:

1. Different contexts in which the concept occurs
2. Description and classification of the studied and proposed techniques

3. Correspondence between the theoretical tools appearing in textbooks and the actually
performed activities )

4. 'Highlightiﬁg those activities not actually developed which cdul_d nonetheless be developed.
using the proposed theoretical tools

5. Elicitation of those mathematical models implicit within the activity performed with
limits : :
6. Identification of some didactic phenomena actually present; in this development.

Finally, using the results derived from this analysis, formulating some conclusions and expla-
nations about the spotted didactic phenomena, which will serve as hypothesis for the research
on course.

4 Study Methodology

Three official Spanish textbooks arc selected in order to.be analysed by means of the study
program proposed by Dr. J. Gascén [16], based on some theories developed under the same
didactic paradigms, consequently matching the model of the mathematics activity sustained in
this study. :

o 20
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5 -Main Study Results’

From the analysis of the selected textbooks we have developed the following sections:

O
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1. Kinds of Problems: Description of the techniques employed and delimitation of the Fields
of Problems

Three grand classes of types of problems were essentially found within the global activity:

(a) Algebraic handling of limits

This is the first and most important, in view of the amount of exercises covered
within this field of problems and of the time dedicated to them. The technique
consists of: T1: producing a result by means of consecutive algebraic handling of
a given expression and by applying different theorems about limits. The algebraic

handling bears more importance or interest than achieving a result,-not only for -

~—

grading purposes, but basically because should the expression be not "adequately”
handled the result would be almost 1mpossnble to draw. :

Graphical representation of Functions. These functions are in general continuous
except in a finite set of discontinuities (in most cases, a maximum of 3), and they
have an algebraic analytical expression. The technique consists of: T2: Algebraic
handling of a functional expression (almost always algebraic) in order to locate the
points of discontinuity. Then, calculating the limit on those points. Last, drawing a
graphical representation of the function. ’ '

Study of “slightly different” Functions. These functions are often absolute values,
integer parts and functions which are defined in slices. The technique consists of:
T3: Reducing those expressions to handling able algebraic expressions and then

 calculating the limits.

2. What id not done but could be done with limits? Some unrest arises to see how the '
theoretical developments explicitly shown by textbooks would be good enough to perform
various activities which are not actually performed, although, by $ome mysterious reason,
they are highly valued as far as learning evaluation is concerned, both in secondary .
education system and in cognitive education researches:

(2) Related to Graphics: There is a lack of elementary reading technique to read a graph

of which the analytic expression of the function is not known.

(b) Related to Discreté condition and Successions: Being limits'a powerful tool for the

3. 'Some_ Didactic Phenomena.

~—

purpose, no relationship is built up between continuous and discrete. No work is’
done with the succession of function images, which would allow to link succession |
and function, through limits, even though the mathematical model whlch eases this
relationship is elicited during the theoretical discourse. A

Related to Numerals, Real numbers: No work is done with the conception of real
numbers as limits of successions, even though the body of real numbers is ‘char- .
acterised as ordered and complete (density property). No work is done with the
idea that 3.999.:. equals 4 and with the idea that three points following a numeral
actoally represents a limit. '
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During the didactic analysis some quite -surprising, and even contradictory, facts and
situations arose. Those situations seem to

indicate the presence of some phenomena, since they appear under the same aspect in all
three textbooks:

(a) While dealing with limits, various theoretical models about this concept are explicitly
presented which will never be required or used later on, while developing the actual
mathematical activity proposed to the students. Those models appear to be purely
ornamental, only meant to emphasise the fact that the matter been studied and
worked about limits is complex, abstract, and consequently, important.

—
=
~

Along with the theoretical development various activities could be performed, which
would enhance the usefulness and meaning of this mathematical tool, and it would
also help to justify introducing thosc rigorisms in secondary school; nevertheless,
they are nor performed.

(¢) The actually performed mathematical activity is very clear and simple. It lacks any
complexity: the exercises do not contain an)" €, 6, notation nor any deep abstractions;
problems deal basically with calculation of limits solvable by means of techniques
which are clearly explained during the theoretical discourse.

(d) The techniques being taught and being uséd for the mathematical activity bear
such a severe rigidity that it almost blocks any work linking one with the other, or
modifying them to derive one from the other. They are so much specific that the
study activity about fields of problems comes to be atomised and restricted to just
a few fields, leading to the loss of an integrated sight [15], [13).

(e) There is only one mathematical environment where the concept of limit is developed:
the study of functions. No relation with numerals is shown, as opposite with what
was done up to the seventies [18). The concept is not presented as a suitable tool
to read a function graph of which the analytical expression is unknown. Most of -
the functions are of algebraic nature, except some transcendent and trigonometrical
ones. :

(f) Formalising the concept of limit in mathematics emerges as a need in order to provide
real numbers with continuity [17]. It moulds a tool associated with continuum, with
convergence. By contrast, textbooks systematically portray it as linked with the
concept of discontinuity. '

4. Some possible explanations for those phenomena.

The premise implied states there is an implicit model of function in the secondary teaching
system which forces the limits to be considered as sheer algebraic computing, and con-
sequently, free of any difficulty coming from its analysis, that is: Function jjsynonym;;
Algebraic Expression Any intricacy in its study derives from the algebraic handling itself..
This is the reason why a function is different from a graph and also different from a real
situation. Also, there is the other implicit model which deals with limits as synonyms of
function limits. In this case, limits will be limits of algebraic expressions and they are
approached as solving an algebraic problem.

As a result, the following facts are drawn:
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(a) The relationship between function and graph is of ccnsequence nature, not by defi-
nition. That is: given a function, we can elicit its graph, but a given graph does not
represent nor has any associated functional feature.

(b) There are no functions without algebraic analytical expressions, consequently, since
numbers are not functions, no such things as 3.999... = 4 are considered.

(c) The students consider the following expressions as analytically different:

z2 -1
z—1"

z#1 and x+1, x#1

(d) On building a graph, the students engage themselves in calculations and building of
tables; they do not use discontinuity points nor asymptotes, in order to create the
graph. These are studied as something unrelated to the drawing technique.

(e) Almost absolute lack of any activity related to the continuity of functions (just one
exercise appears among the recapitulation problems).

. 5. Some epistemologic and didactic obstacles

(a) In order to formulate the concept of limit the concept of real number is required,-

but in order to define the real number the concept of limit is required as well [17].

- Limit (convergence) refers to items which do not yet exist since they have not been
defined.

-(b) From an epistemologic standpoint the idea of limit cannot be conceived as unlinked
from the idea of real number; both ideas were formalised almost simultaneously.
Nevertheless, in secondary teaching system numerals can only bescarcely approached
(limits of numeric successions) since it would mean to approach real numbers, which
are still a mysterious matter in secondary teaching [3], [8], [14], [19], [20], [23].

(c) From a mathematical standpoint, limit of a succession is a simpler thing that limit
of a function, since it is a discrete item. From an education standpoint, limit of a
function is simpler since it is easier to be elicited.

6 Some Final Conclusions and Remarks

1. The techniques being taught bear a severe rigidity in solving problems about limits. The
fields of problems being studied are atomised and almost completely mutually unlinked, making
it difficult to engage into a deep study of those problems [15].
2. There is a uniformity in both theoretical and practical activities as far as the concept of
limit is concerned.
3. There is a conflict between: what the secondary teaching system states that should be
taught and learned in mathematics, as can be seen in the theoretical discourse of textbooks,
and what is actually done, as can be detected through the activities submitted by those same
textbooks to the students.

As a possible explanation to these phenomena, the suggestion is put forth that there is
a hidden mathematical model of limit not elicited because it is considered as very limited
and scarcely analytical, although it is the actual concept being used and also the one which
characterises the kind of activities developed in the classrooms: that is: limit as synonym of
function limit, and even more, function as synonym of algebraic expression. This way, what is

O
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really studied is the limit taken as an operator assigning a number to each functlon Nothing,
aside from algebraic expressions is being considered as study object. ’

Finally, one of the important contributions to research in mathematics teaching being
brought up by this section of the study, is the elicitation of how knowledge to be taught con-
stitutes a new construction being produced under different paradigms and interests. Models of
mathematical knowledge do not match with models of taught knowledge, and consequently it
embraces a new epistemology, an epistemology characteristic of mathematics education. There-
fore, although there exists an interdependence between epistemologic and didactic problems,
the welght of mathematicians in designing a teaching partlcnpatlon must be conditioned and
supervised by teachers. -

7 Bibliographic refferences

(1] BROUSSEAU, Guy (1983) Les obstacles épistémologiques et les prob.lémes en mathémati-
ques, Recherches en Didactique des Mathématigues, vol 4/2, 165-198.

[2] BROUSSEAU, Guy (1986) Fondements et méthodes de la didactique des mathemathues
Recherches en Didactique des Mathématiques, vol. 7/2, 33-115. :

[3] BROUSSEAU, Guy (1988) Les obstacles épistémologiques et la didactique des mathémati-
ques, Gommunication au Colloque international: Construction des savoirs. Obstacles et Con-
flits, Montréal: CIRADE, Agence d’Arc 1989.

[4] BROUSSEAU, Guy (1993) Approche théorique des situations didactiques, Seminar held in
the Mathematics Department of the Universitat Autdnoma de Barcelona. Not yet published.

[5] CORNU, B. (1980) Interférence des Modéles Spontanés dans ’apprentissage de la notion de
limite, Séminaire de Recherche Pédagogique, Grenoble, 57-83. y

(6] CORNU, B. (1981) Grandes lignes de I’évolution historique de la notion de limite, Bulletin *
- de PAPMEP, No 335, 627-641.

. [7] CORNU, B. (1982) Quelques obstacles & ’apprentissage de la nétion de limite, ‘Séminaire
de Didactique et Pédagogie des Mathématiques, No 34, Grenoble, 230-268.

(8] CORNU, B. (1985) Les principaux obstacles & I’apprentissage de la notion de limite, Bulletin
IREM-APMEP, 55-63.

[9] CHEVALLARD, Y. (1985) La Transposition Didactique, Du.savoir savant au savoir en-
seigné, (1991), La pensée sauvage, Grenoble.

[10) CHEVALLARD, Y. (1989) Le concept de rapport au savoir. Rapport personnel, rap--
port institutionnel, rapport officiel, Proceedings of Séminaire de Grenoble IREM Université de
Grenoble, Francia.

[11] CHEVA-LLARD,-Y. (1990) Didactique, anthropologie, mathématiques, Postfacio a la se-
gunda edicién de: La Transposition didactiqgue. Du savoir savant au savoir enseigné, La pensée
sauvage, Grenoble.

2] CHEVAELARD, Y. (1991) Un problema de Ingenieria Didctica de los Sistemas de For-
macién: las pricticas en matematica, Course held in the Mathematics Department of the
Universitat Autdonoma de Barcelona. Not yet published.

(13] CHEVALLARD, Y. (1992) Hacia una Teoria de los Momentos Didacticos, Postgraduate
course on Mathematics Education given by the Universidad de Granada, February 1992.

O

ERIC R4 - -

Aruitoxt provided by Eic:



[14] DAVIS, R. y VINNER, S. (1986) The notion of Limit: some see'mingl); unavoidable mis-

. conception stages. Journal of Mathematical Behaviour, No 5, 3-27.

O

{15] GASCON, J. y BOSCH, M. (1993) La integracién del momento de la técnica en el proceso
de estudio de campos de problemas de mateméticas, Seminar on Mathematics Education by
Mathematics Department of the Universitat Autdbnoma de Barcelona. Not yet published. .

[16] GASCON, J. (1994) Analisis didactico de la actividad matemadtica, Mathematics Depart- -
ment of the Universitat Autdnoma de Barcelona. Not yet published.

[17] KLINE, M. (1992) E! Pensamiento Matemdtico de Ia Antigiiedad a nuestros dias, 11, Alianza
Editorial, Madrid.

[18] PUIG ADAM, P. (1955) Matematicas Sexto Curso Nuevas Gra.ﬁcas Madrid.

(19] SCHWARZENBERGER, R. y TALL, D. (1978) Conflicts in the learning of real numbers
and limits, Mathematics Teaching No 82, 44-49. -

[20] SIERPINSKA, Anna (1985) Obstacles épistémologiques relatifs & la notion de limite,
Recherches en Didactique des Mathématiques, vol 6/1, 5-67.

{21] SIERPINSKA, Anna (1988) Sur un programme de recherche lié 4 la notion d’obstacle
épistémologique, Colloque International ‘Construction des Savmrs Obstacles et conflits, Mont-
réal.

[22] TALL, D. (1985)'Understanding the calculus, Mathematics Teaching No 110, 49-53.

{23] TALL, D. y VINNER, §.(1981) Concept image and concept definition in Mathematics
with particular reference to limits and continuity, Educational Studies in Mathematics No-12,
151-169. .

LIMITE.tex

EMC _ 2—17 25

Aruitoxt provided by Eic:



Difficulties teaching Mathematical Analysis to Non-Specialists

Marcia Maria Fusaro Pinto Eddie Gray
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This paper reports the effects of teaching mathematical analysis to students
who are to be teachers of elementary school children, yet who take analysis as
the final summit of their mathematical studies at university. The students
concerned divided into three groups. A tiny minority understood the
Sformalities of the subject and the need for logical proof, the majority attempted
to learn definitions by rote but in the main fgiled to understand the underlying
concepts, and the remainder used inappropriate conceﬁt images from earlier
mathematics. This paper questions the rationale of teaching formal analysis at
degree level for those who are not specialist mathematicians.

Introduction

This paper considers the almost insignificant effect that a course in analysis had in
changing the quality of mathematical thinking of a group of students who, training to be
elementary and secondary school teachers, follow the course as a high point of their
university degree programme. Evidence from written assessment and individual
interview shows that only a tiny minority of the students are moving in a direction that
would eventually enable them to utilise the formal aspects of mathematics. The majority
did not recognise the need for formality. It was a surprise to find some students, even at
this level, attempting to generalise from the particular; despite their extensive work with
real numbers, their concept image had not expand to take in the notion of the concept
definition. Knowing the concept definition by heart did not guarantee that they
understood the concept (Vinner, 1992). Their experience prior to meeting the formal
definitions not only affected the way in which they formed mental representations of the
concepts (Tall, 1992), but frequently became manifest through their efforts to resolve
problems with an inappropriately “evoked concept image” (Tall & Vinner, 1981).

A high proportion of pre-university mathematics teaching tends to emphasise calculation
and manipulation of symbols to get “answers”. In such an atmosphere the acquisition of
the concepts has an intuitive basis which is founded upon experience (Tall, 1992). Such
a paradigm contrasts starkly with that utilised to develop advanced levels of
mathematical thinking; formal definitions give rise to concepts whose properties are
reconstructed through logical deductions.

The study of analysis may be seen as an attempt to introduce the student to the formality
that is the hallmark of the working mathematician; the general thought patterns of the
students are encouraged to change from a mode which relies extensively on the
formation of concepts through the encapsulation of process as concept (Gray & Tall,
1994), to a mode which is structured within the realms of concept definition. However,
the transition from one form of thinking to the other is a difficult one. Though
mathematicians use definitions and formal language in a meaningful way to compress
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mathematical arguments, the learners method of thinking about mathematical concepts
can depend on more than the form of words used in a definition.

Vinner (1992) has outlined students possible responses to cognitive tasks associated with
the implied use of definition: the desirable one in which the student'is not supposed to
formulate a solution before consulting the concept definition, and a more usual model
where the respondent is unaware of the need to consult the formal definition but places
emphasis on a concept image. In the instances considered in this paper we show there
was little very little evidence of the former but a considerable emphasis on the latter. But
perhaps it is impossible to avoid the mathematical tensions that arise between the
mathematcs tutors’ desire to introduce students to the rigour of mathematical proof and
the student perceptions that may be dominated by other considerations: ’

“When I got the piece of work back my main concern was with what I had got. Unfortunately
being so preoccupied with other things Fam doing....I am fully aware of the fact that the things I
did last year and even last term are going to be out of my head unless I think about them again.
What I said to you earlier about relating everything, well it just goes against that philosophy...
basically I have a problem of relating...” (Third year undergraduate student)

The context

" At the end of a first course in Analysis, 20 students, all following a four year course
leading to a teaching degree with mathematics as their main,'subject, were given written
tasks that required a demonstration of their understanding of the use of definitions
introduced during the course. Though there were three items within the package of
assessed work we will consider student responses to the first, a problem which focused
on the their understanding of real functions and the definitions associated with
differentiability and continuity. As a result of the analysis of the students efforts seven
students were invited to take part in moré detailed individual interviews.

This first item invited students to:

2 PO
Explain why the function f(x)= {x * rational is discontinuous for all x # 0,

0 x irrational

The students written responses showed that the majority of them tried to avoid as much
as possible the use of formal language; they worked mainly with an image and/or tried to
use a dynamic or procedural version of the definition. In their responses it was possible
to identify the coexistence of these characteristics with older images that -had remained
unchanged by the new theory. In other instances it was possible to identify “incorrect”
images constructed on a misunderstanding of the theory.

Image using

Though all of the students had been taught the concept definition, only one student used
it to solve the problem. By far the greater majority of students provided evidence of
attempts to reconstruct a proof through a concept image, without reference to the concept
definition; in some cases with verbal reconstruction (Figure 1):
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Figure 1: Verbal reconstruction of the proof for continuity
One a;tempied to be more explicit about the image (Figure 2):
T

These  partiflc) are & clwe vogethac , Got
the Gner bebuwesn CERern ace pnzcé'tcmdy

n clne vp Cha gEph  coudd look geaneltivig
ke P

. 5 ». ~
Lhin  funckon o olircon tinuous .

Figure 2: An evoked concept image of continuity

Though this student was interviewed later, no further insight into his image was
forthcoming. However, some was gained from the interview with another student. Asked
to draw. pictures of functions that could not be differentiated this student drew the graphs
shown in Figures 3 and 4.

As she drew Figure 3 the student commented: -

“I still think if you could differentiate at a point
[pointing to a cross]... if you joined those together
[joining up the crosses] like that you could still
find the gradient at a certain point....you can have
the gradient between two of those points, that
would be the gradient if it was a straight line.”

Figure 3. Student image of anon-
differentiable and discontinudus function
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As she drew the second. graph the student was
asked if it was possible to join the points:’

“No... because I've seen one similar to that
[Figure 3] on a graphical calculator, and I've
seen that one as well [Figure 4].”
The student was asked if she could provide an
example of the formula for the function she had
seen drawn in the calculator, but she replied:

Figure 4. Student -image of a non-

differentiable and discorrunuous function “ ean { remember. It wasn't exactly that [Figure

3] it was similar. It had lots of little bits there [m

the calculator] and then got wider.” .
Three isues would appear to arise from the students efforts to compensate for their.
inability to providere the appropriate concept definition:

* The image associated with the “linked points” of a graph prevents any
formal association between the concept definition and an approprrately
formed concept image.

" » Such an image may be reinforced by misconceptions that arise from an
automatic use of graphic calculators and computer programs; initially
students may not associate the relationship between the graph, the defined
function and the associated procedure (see also Hunter, Monaghan & ,
Roper, 1992).

* Students learn images and intuitive ideas by rote; some seem not to worry
about basic foundations upon which to relate knowledge meaningfully.

Reconstructing the definition

The images some of the students constructed differed srgmﬁcantly from the ideals that
mathematicians would wish to be constructed from the definition. The statement
“Between two rationals there exists an irrational; between two irrationals there exists an
irrational” was translated by some students to mean: )

“since there is always an interval around each rational p/q where x is an irrational...”

“there is always an interval around some rational x where x is irrational and.,.”

Such representations provide an example of student’s imprecision. in the use of -°
mathematical language and their difficulty in dealing with quantifiers which may arise
from interpreting theorems in such a way.

Helped by a “redefined” model:

’“«z. Q O wdma\-mw V72V PY-S%
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one student simplified his arguments to prove that the function given in the first question
is continuous at x=0. This student could conclude:

ler % be o B emer sdearz =0 (@ (£ &)
from eanes erpleaninon O Wl _Lie berween huo
irehored o mers (@ F 0k« irrdnonak wumber )
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During the interview this was placed into a context by the student:

“We had worked out in class that between any two rationals you always find an irrational,
between any two irrationals you'll always find a rational, so from that I deduced that if you took
two rationals you'll always be able to find an irrational in between, so I put down on my
assignment that it was alternating between rationals and irrationals, which is wrong I
think...Why do I think it is wrong? To be absolutely honest with you I haven’t really looked at it
properly to work it out which I know I should, but all I remember is thinking that I was right
when I did the question.”

Such a student would require some considerable time to synchronise his model with the
proposed theoretical model. These students will not have this time.

The individual interviews confirmed the evidence received from assessment. Each
interview started with a series of common questions to establish students understanding
of the formalities and central concepts arising from the analysis course. The students
selected for interview (N=7) were drawn on one hand from those whose written work
had shown evidence of the interplay between personal description and a concept image
and those who, on the other, displayed the inappropriate use of a concept image.

Space precludes presentation of the “formal” questions but the following synthesis will
allude to them and highlight the most important issues that arose from the interviews.

* None of the students gave the formal definition of continuity and neither
could they state how to calculate correctly “the derivative of f at a point in
the domain D where f:D — IR.”.

+ Since the student’s examples of differentiable and non differentiable
functions were the same as those given for continuous and discontinuous
functions, it is hypothesised that their concept images of these notions
were the same (Vinner & Tall, 1981). Their confusion over these two ideas
could be seen even when they attempted to provide a formal definition:

“ A function is continuous if it can be differentiated at every point within a range”

O
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“A continuous [function], you can differentiate that.....if you have two points on it, it.
is continuous between the two points then you can differentiate that”

«  Whether or not a function could be defined at a point determined whether
or not it was continuous for some students

“...where you pick two points and a point between can be defined as well. You've got
a curve which continues because whichever point you pick there’s always another
point on the line, there’s no gaps in the curve.”

“Continuity is every single point has another value”

Some others had a confused image that they could not synthesise in words:

“I don't know the definition but I know that it’s where all the points if you drew them in a graph
all points.....well they are not up and down all over the place”.

% Unable to write the
1. Youve got a basic line | definition of continuity
S 3. ...and at some point the one student indicated
lino reaches there and breaks | that the images of
 \ % = It continues from continuous function she
2.... with the things somewhere else in a possessed were from
going up and down horizontal a6 i siops there | graphical work (Fig. 5):
J - 5. ..and continues “I can vaguely describe
from there.... what a continuous
function is on a graph”.

Figure 5: A students evoked concept image of a continuous function

This student’s attempt to describe such a function with her graph- were almost
indecipherable. However, she did indicate that

“I am just remembering a few things but it is not coherent at all”.

Discussion

It seems that a great problem in dealing with mathematics lies in the fact that the theory
was constructed upon aims that students do not achieve. Partially, this is because the
composite theory is not made explicit but hidden behind the formal language and
apparently clear hierarchies which mathematicians use to present the subject matter.
Students have difficulty linking the language and the sequential steps of the hierarchies
to form an overall theory encompassed within an understanding of the reasons for its
formation. Many, destined to acquire definitions by rote learning, attempt to support
these through intuitive ideas and the reproduction of procedural aspects of the theory.
Even though they may be given intuitive experiences to support the formal aspects,
being unable to understand the relationship, they evoke previously established concept
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images which are not good enough to build upon. They acquire definitions with no
supporting content; they evoke images from within the school mathematics curriculum.

Additional evidence for such an hypothesis could be found in the students’ efforts to
classify numbers as rational or irrational. One student who had no understanding of the
difference and who made little effort to obtain any, stated that: '

“I always look these up when I need to know what they are. I've got a list of all the different
symbols and what things mean and I usually refer to that when I need to know, but it hasn’t
stuck yet.” )

Another, though aware of the definition, preferred to use a concept image when
analysing 0.9:

“If you rounded that up it would be a rational number.”
His explanauon of this comment mdlcated that he did not understand what one means:

“I don’t know, it’s just like .999... is too close to 1 but I don’t know whether that makes any
difference to a rational or an.irrational number being so tiny. I’m just guessing.”

A third had difficulty classifying zero as rational or irrational but even though he
attempted to work- w1th the formal definition he failed because the latter was
rmsunderstood

“..zero isn’tit 7 I don’t know...Maybe it’s an irrational. I'm not really sure whether you can have
division by zero....Zero divided by zero, normally you can’t have zero on the bottom of a
division line because it's undefined, so therefore it can’t be defined as p over ¢ so it must be
irrational.”

This evidence of students rote learning, both of the definition and the concept image,
must be placed alongside additional evidence which illustrates that students knowledge
of mathematical concepts may take on a variety of identities (Duffin & Simpson, 1993).
We suggest. that though such variety may be strongly associated with students
conception of real numbers, the real mimbers may still not be natural in the sense used
by Duffin & Simpson even for students at this level.

"Conclusion

This paper presents some evidence that arises from the mismatch that can occur when
students who are not candidates for advanced mathematics are faced with the rigours of
advanced mathematical thinking. The vignettes serve to support the evidence provided
by Vinner (1992) but we would wish to look more closely at the longer term prognosis
for the mathematical development of the students considered. Although only one student
provided evidence of a reasonable understanding of the place of concept definition in
analysis, all of the students described within this paper achieved at least pass grades in
their assessed work-largely through a kindly interpretation of the marks.

From the evidence of the assessment and the individual interviews the students may be
seen to fall into one of three groups:

s
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e A very small group (N=2) which seemed to be moving towards a formal
understanding of the subject matter using the formal definitions
meaningfully or recognising the need for formal language and logical proof.

e A second, much larger group, (N=10) who, though they evoked the use of a
concept image to support personal description, did not effectively use formal
definitions. The majority of these students revealed that they had initial
difficulties interpreting problems in the context of the theory. Such
difficulties could be manifest through the limited considerations they gave to
crucial aspects of the problems, for example, considering rational cases but
not irrational ones, or arguments augmented with superfluous—in the sense
that they provided more than the necessary—repetitive considerations.

> A third group of students (N=8) used inappropriate concepts images formed
from earlier mathematical conceptions which remained largely unchanged as
a result of the course in analysis. Such students attempted to establish a
formal result by generalising. from specific cases or they displayed an
inability to link procedural and conceptual images of function and graphical
representation.

The laudable desire to lead these students towards the formality of mathematics was
thwarted for two reasons. Not only do they not appear to be ready to start the course—
and thus the assumptions underlying the move to formality were not met-but, more
importantly, they will have no opportunity to consolidate their knowledge to the point
where concept definition and concept image have appropriate associations. When faced
with formal aspects of a theory which they. do not construct for themselves, students can
ignore not only its convenience but also the arbitrary and respective reasons for each
theoretical construction and each definition; important links can be missed and such
deficiency will give way to a collection of fragments which bear little relationship to
each other.
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REASONS TO BE FORMAL:

contextualising formal notation in a spreadsheet environment

Janet Ainley

Mathematics Education Research Centre
Institute of Education, University of Warwick

This paper addresses the early stages of children’s introduction to the use of variables in
Sformal algebraic notation. We conjecture that some of the difficulties encountered by
children in this area may be accentuated by their lack of appreciation of the purpose or
power of formal notation. A teaching approach is described which aims to situate the use of
Jformal notation in meaningful contexts. Case study evidence from children working with
this approach, using graphical feedback in problem solutions, is used to suggest links to
other areas of cognitive research, and to refine questions for future study.

Background
In a recent survey of the learning and teaching of school algebra, Kieran (1992) cites a number of
research findings which indicate the relative success of computer-based environments in
developing children’s understanding of variable in the early stages of learning algebra. Kieran
attributes this success largely to the procedural nature of the programming involved. The use of
variables in Logo is mentioned particularly as being accessible because it lends itself to procedural
interpretations. Kieran also comments on the fact that although there has been a great deal of
research into children’s learning of algebra, there has been litle research into the teaching of

" algebra or the content and presentation of what is taught. This paper reports on research which
involves an innovative approach to the introduction of the use of variables to primary school
children which may suggest an additional explanation for the relative success of children working
in computer-based environments. We conjecture that the lack of any sense of purpose for the use
of formal algebraic notation in traditional approaches to beginning school algebra may contribute to
children’s difficulties in accepting formal notation. Activities based around workihg with a
computer often involve pupils in using variables, for example within Logo or BASIC
programming, in order to achieve particular effects, so that the algebraic notation is a means, rather
than an end in itself.

Approaches to contextualising algebraic notation

The idea of contextualising formal notation is not, in itself, a new one. Word problems offer a way
of both giving meaning to algebraic expressions, and linking work in algebra to children’s
experiences of arithmetic problems. However there is considerable evidence that representing word
problems as formal equations presents major difficulties for pupils. (Kieran (1992)). Generally
such word problems have a single solution, which may be found through a number of different
approaches. Describing the problem situation in an algebraic form may be high on the teacher’s
agenda, but not on that of the pupils.
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‘Investigations’ offer another approach to introducing formal algebraic notation in meaningful
contexts. Typically in such an activity the child might be required to explore a number patiern
arising from a practical situation, and then asked for the hundredth number in the patern, or a
method for finding any term in the sequence. The aim is to encourage the child to generalise the
pattern in the form of an algebraic expression. This approach has been characterised by Hewiu
(1992) as ‘train spotting’, since the learner’s attention is generhlly focused on pattern spotting
rather than on the situation from which the investigation arose. From the child’s point of view, it is
difficult to see any purpose in formalising the patern in algebraic terms: a verbal description of the
pattern, or a generic method for calculating values, may seem just as efficient for giving the
solutions required.

An alternative approach to formalising .

One focus of our research in the Primary Laptop Project has been children’s use of spreadsheets as
a mathematical tool. Early studies indicate that the children’s ability to interpret and understand
graphs has been enhanced through working in a spreadsheet environment (Ainley (1994)). In order
10 exploit this potential, we have developed a teaching approach (illustrated crudely in Figure 1)
which we have called active graphing (Ainley and Prait (1994a)). Children are encouraged 1o enter
data they collect in experimental activities directly into a spreadsheet, and graph this data regularly
during the course of the experiment,

thus enabling the graph to be used as || collect make a p|study graph and make
initial data graph or refine conjectures

o | decide what further

when you are ready!

an analytical tool. This means that the

physical experiment, the tabulated
data and the graph are brought into
close proximity. Research evidence
from data-logging projects (e.g.
Mokross and Tinker (1987)) supports
our conjecture that this proximity is

draw conclusions

. . K . . Figure 1: The active graphing process
important in supporting children'’s :

understanding of the conventions of graphing, and their ability to interpret complex graphical
representations by relating them to the activities from which they arise (Pratt (1994)).

Since the spreadsheet is an environment in which an algebra-like notation is used, we were
interested to explore whether an active graphing approach could be used to introduce children to the
power of generalising through formal algebraic notation. In order to do this, we selected activities
which lent themselves to this approach, having a practical element so that children could begin by
collecting data, but in which the underlying mathematical structure was accessible to the children.
Two other key features of the activities were that the outcome was not obvious, so that there was
some point in using the active graphing approach, and that the practical activity was rather tedious,
so that children would be encouraged to look for short cuts.

O
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With these eriteria in mind we selected a [ o e fencing,

number of optimising activities. We have | She wants to make a rectangular pen for
reported elsewhere (Ainley and Pratt her sheep against a stone wall.

(1994b)) on the use of one of these as a

whole class activity which gave us some g g

insights into situations which prompted the
need for formal notation. Here we focus | what length and width should she make it
on one pair of children working on a to enclose the largest area?

second activity, known as The Sheep Pen,

What if she had a different length?
Figure 2: The Sheep Pen Activity

shown in Figure 2,

Methodology

In this stage of the Primary Laptop Project our research is essentially exploratory, rather than
addressing clearly focused research questions. We are interested in exploring the range of
mathematical activities that are possible for children who have continuous and immediate access to
computers, and identifying areas for more focused research in the future.

The case study material used in this paper was collected in a research setting removed from the
classroom. Eight pairs of children (chosen by the researchers) worked on the activity with one of
the researchers acting as ‘teacher’, introducing the activity, responding to the children’s questions
and occasionally intervening. The sessions were recorded on video tape, with the second researcher
also taking field notes.

Jordan and Stellios were both aged eleven and in ‘their final year at primary school. They were
described by their class teacher as being of average ability, but neither of them were particularly
highly motivated in mathematics. They had not been introduced to formal algebraic notation; but
they were familiar with using a spreadsheet and had experience of an active graphing approach in
the context of experimental work.

Working through the active graphing process

Like most of the pairs we observed, Jordan and Stellios began by working practically on the
activity, using an art straw cut to 30 cm long to model the fencing. They bent the straw, measured
the length and width of the pen, and set up columns on the spreadsheet to record their results. They
knew that they could use and replicate a formula to calculate the area of the pen, and since the focus
of the activity was not on understanding the calculation of area, we helped them where necessary to
get this formula working correctly.

When they had collected several picces of data, the researcher intervened to encourage them to look
ata graph, shown in Figure 3. Jordan was able to discuss the meaning of the graph but at this stage,
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his attention was on particular points, rather than on the relationship between length and area.
However, it is clear from the boys’ responses to further questions that they were aware of the
overall shape and pattern of the graph.

STEL: IfI put eight and a half, where would that be?| 120 vy
How would we write that? ‘110 - % x

RES: Where do you think 8.5 would appear as a ‘gg e X
cross?

Stellios points between 8 and 9 for the width, and at : 80

about 100 for area. They putin 8.5 as the width, and | ¢ 70

Jordan bends the straw and measures the length as 14.| , 60

The area appears on the spreadsheet. 50

STEL: Highest! That’s the best so far! 40

Jordan makes a chart again to check the position. :g

The length is actually measured incorrectly, so this 2 ; 6' 8' "o

point looks higher than 8 or 9. WIDTH

JOR: There it is (pointing to the graph)

STEL: (pointing lower) I thought it would come Figure 3: Graph of measured data

around there.

The boys were confident to make predictions based on the graph, but they had not yet seen the
shape of the graph clearly enough to realise that some of their measured data was inaccurate. For
some other pairs, irregularities in the graph. provided feedback which stimulated them to question
their results, and either re-measure, or change to calculating the length of the sheep pen for a given
width. For Jordan and Stellios, looking at extreme values was the stimulus to use calculate data
rather than measuring. This was a pattern which we came to recognise in other pairs. It is quite
awkward to bend the straw accurately for such a small width, and also the small numbers involved
make the calculation relatively simple.

STEL: Try a width of point 5.

JOR: What's the length?

STEL: Oher 19,29

RES: How did you work that one out Stellios, because you didn’t measure that one did you?
STEL: Ifthe ruler’s 30, half and half is one and the rest is 20, no 29.

Once Stellios had described his method, the boys wanted to use it to check the other values they
had already entered. Thus the method used initially for finding a single value developed into a
generic method which they could use repeatedly. At this point the researcher intervened to suggest
that the boys might ‘teach the computer’ their method for calculating further data. This was a
metaphor which was familiar to the children from their work with Logo.

RES:. .. What you are trying to do is to tell the computer how to work the length out, given some

width. (pointing to cell B11 in the width column) So if you knew what that width was,
you're trying to work that length out (pointing to cell All, in the length column.)

JOR: You have to add these together (pointing vaguely at the length and width column). ... double
it (pointing to the width).

STEL: How do you double it? ..

JOR: and then you work out the length.
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STEL: zero point five add zero point five or something

JOR: .. yeah but they don't know .. (pointing at width cell)

JOR: 1know B eleven, (typing) B 11, Bi1, .... right B 11, add, ... B11 add, oh no, B11 times 2.

STEL: oh yeah times 2

JOR: so then that doubles it , and

STEL: add A 11

JOR: Bll times2 add ..

STEL: add A1l equals C11

JOR: No we need to...if there's 30 in the ruler right, it's all doubled though, we need to tell it how
to work out what'’s left.

The boys’ initial attempts to formalise their method show a number of significant features. Jordan
has a clear picture of the calculation he wants to express, but has to overcome two hurdles in order
to formalise it. The first is to express ‘double it’, which he quickly resolves as ‘times 2°. The
second is more difficult. Having doubled the width, he then needs to find a way to express ‘what is
left’ from the original 30 cm. In working on this, the boys quite confidently use ‘B11’ as a
placeholder for a width which they don’t yet know. This step in formalising does not seem to
present an obstacle for them, but as they try to resolve the problem of how to find ‘what is left’
Jordan reverts to a generic example. His use of the cell reference as a placeholder is not yet secure.

The boys continued to work on their problem for several more minutes, occasionally touching the
keyboard, but mainly trying out ideas verbally. At one point, they deleted the formula they had
typed, and the researcher took the opportunity to ask them to recap what they have done.

JOR: So far we've got, from here we've got Bl1, anything that’s in Bl11

STEL: times it by 2

JOR: times it by 2 so it doubles it

RES: ...0OK

JOR: We need to tell it like, we want to tell that there’s 30 over there, if we times, say it was 5,
times by 2 it becomes ten, and what, and tell it to know how much is left on the ruler.

RES: Right. How do your calculate what's left? What do you do when you do it in your head?

JOR: Well if it was, ifitwas ...

STEL: What's left ...is it that little r thing? Is it remainder?

JOR: ifitwas, if it was 7, you double the 7 to 14 it would go in there but there’s 16 left ...

RES: What have you done to work that 16 out?

JOR: 1know that 14 add 16 is 30

Here we see that although Jordan still reverts to a generic example when he cannot resolve the
problem of finding what is left, his grasp on B11 as a placeholder has changed. He spontaneously
talks about anything that is in B11, indicating he has some understanding of the cell reference as a
variable. Itis interesting that each time he goes to a generic example he chooses different values to
work with.

Stellios’ interjection about remainder at first seems confused, and indeed we watched the tape
several times before we noticed what he was saying. He seems to be making a link between the
phrase ‘what’s left over’ and memories of division problems, where he has learnt to record the
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vemainder’ with a ‘little r’, e.g. 25+ 3 = 8 r 1. He seems 10 be using a direct-translation approach
(Chaiklin (1989)), but the translation is not from a given word problem, but from the boys’ own
verbal formulation of their calculation method. This direct-translation approach continued to prove
an obstacle in their attempt to devise a formula.

About ten minutes later, they decided they needed to include 30 in their formula. They typed

=30 B11*2 -. They secemed to have a sense here that they must start with the length of the straw,
but they were trying to translate ‘take it away from’, and they could not see which operation to use.
They quickly deleted this formula and typed =B11*2-30

STEL: .. You can’t take 30 from ...um

JOR: times it by 2 take it from 30

STEL: times it by 2 and take it from 30

They try putting in 13 for the width and get length -4 and area -52.

JOR: its probably 52

STEL: the minus, shouldn’t have put the minus in

JOR: Idon’t know .

JOR: BI1I times it by 2 take it from 30 ... but this looks like take away 30, and we don’t ... It
should have been 4, so its nearly right .

At this point, the boys had been working on the problem of teaching the computer their method for
around thirty minutes. Itis tempting to interpret their position at this point as failure to move from
their generic method to a formal algebraic expression. However, from the language that Jordan
uses it would seem that he has accepted the cell reference as a variable which he can operate on.
We felt that his difficulty lay in attempting to make a direct translation from their verbal
formulation, which cannot be reconciled with the arithmetic structure required by the spreadsheet.
Their verbal formulation for the method of calculation followed closely the physical process which
they had gone through, choosing the width and bending the straw this amount at both ends (‘B11
times 2'), then measuring the length of straw left between the two folds (‘take it away from 30°).
We decided to intervene, offering them a slightly different physical model with the aim of
redirecting their attention from the verbal formulation and back to the physical situation. The

results were dramatic.

RES: Let’s think of it in a different way ... Here’s our length of fencing, which is 30 (holding up
straw). Let’s imagine cutting off our two widths. So we’re starting with the 30 and instead
of folding, lets cut them off. ...

JOR: If we start with 30, take away Bl11 times 2

At this point Jordan typed in the correct formula (=30 - B11 * 2), filled down the column, and they

began to enter more values for the width.

JOR: we virtually did that, but it was the other way round.

The boys then worked excitedly, entering values to try to find the maximum area, and using
decimals to home in on where they thought it would be. In a second session the following day, they

2—31

ERIC 39



worked on the more general problem, using different starting lengths, and enjoying producing
graphs showing smooth curves.

Discussion

In analysing the work of Jordan and Stellios, and of other pairs working on the Sheep Pen task, we
see a number of factors which seem to contribute to their success in formalising. Their familiarity
with the spreadsheet environment enables them to accept a cell reference as a placeholder in
increasingly sophisticated ways. Initially, they used it as little more than an alternative name for
the value of the width. Later, Jordan at least used it as a placeholder for a potential number soon
to be realised, (JOR: ... yeah but they don’t know .. (pointing at width cell)). Finally, he seemed to
be using the cell reference as a placeholder for a range of numbers, that s, as a variable (JOR: So
far we've got, from here we’ve got B11, anything that’s in B11). It is worth noting that these
children were familiar with entering and immediately replicating given formulas. As a result, they
tended to see these as two parts to the same process. Thus they have an image of a physical
location not only for the cell into which they will enter a particular number, but also for the column
of cells into which they may enter a whole range of numbers.

Tall (1992) refers to a formal algebraic expression of a relationship as a template, a potential
arithmetic relationship waiting to be realised. Some children may only be prepared to accept the
use of a symbol as placeholder within the template if that potential can be immediately realised, i.c.
it can be immediately tumed into a number. Later, children, may accept a greater distance between
the use of symbolisation and its realisation as a number. Such children are further on the way
towards reification, when they must accept that the symbolic expression is itself something that can
be manipulated and used (as if the distance between potential and realisation had become infinite).

When working with a spreadsheet, it is difficult to identify those children who have reached this
final level of sophistication in their thinking, since those with more limited views of the nature of
the cell reference may also be able to successfully create a formula to model their rule. We
conjecture that the extent to which children are able to express a verbal generalisation of the rule
they are trying to formalise may give some indication of whether or not they have taken this final
step in their thinking. In the Sheep Pen problem, such a verbal generalisation might be signalled by
describing their rule in terms of the width of the pen, rather than by using generic examples. Much
of Jordan and Stellios’ discussion of the problem focuses on creating a formula: they sepeatedly use
the cell reference, and so it is often unclear how far they have moved towards such a generalisation.

In analysing the tapes of pairs working on this activity, we were impressed by the perseverance the
children showed in working towards a formalisation of their rule. Jordan and Stellios spent about
thirty minutes on this stage of the activity without noticeably losing motivation or moving off task
for more than a short period, even when their attempts were apparently unsuccessful. Although
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they often talked in terms of operating on numbers or cell references, their hand movements
indicated that their thinking was clearly grounded in images of folding and measuring the straws.

Even when situated in investigations or word problems, formalising is often a separate process from
the main activity which has been externally imposed by the teacher. In contrast, within active
graphing activities, formalising has a clear purpose: to generate more data. This larger quantity of
data enables you to work on the problem, and the accuracy of this data can be seen from the
feedback given by the graph. We conjecture that such activities give children a sense of the
purpose and the power of formalising. They realise that unlike their teacher, the spreadsheet simply
will not be able to interpret non-formal rules, such as ‘take away from’. It is our belief that this
experience of using formalising contributes to children’s success in understanding variable. In
common with other computer based environments, children’s thinking is supported by feedback
given by the computer on their attempts to give a formalisation. Further, there is an external
referent, the physical situation in the case of the active graphing problems, or the functioning of the
program in the case of programming. This broader context allows for alternative formulations to be
developed, and so offers an escape route from the trap of direct translation from a single
formulation.

Our analysis also raises a number of questions which we hope to address in further research.

°  How do children perceptive of the nature of the cell reference in their formalisations?

* How interactions with the spreadsheet support them to move towards generalisation?

* Whatare the factors which influence children’s ability to transfer from spreadsheet notation to
traditional algebra?

°  Whatkind of activities might support this transfer?
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ARTICULATION PROBLEMS BETWEEN DIFFERENT SYSTEMS
OF SYMBOLIC REPRESENTATIONS IN LINEAR ALGEBRA

Marlene Alves Dias, Michéle Artigue, Equipe DIDIREM, University Paris 7

Abstract: This article deals with the issue of flexibility between the cartesian and parametrical
viewpoints in linear algebra. Firstly, we present the notions of setting, register of representation
and viewpoint which constitute the theoretical basis of this article. Then we come to cur project of
research and the methodology we have set up to analyse flexibility. Finally, through the analysis of
a written test, we show the difficulties first year students encounter before the flexibility issue. We
also show that for problems that can be solved by only manipulating techniques, the lack of
Slexibility both technical and conceptual leads the students to mistakes which show important losses
of meaning.

L. INTRODUCTION

The disappearance of linear algebra rudiments from secondary school programmes in France (since
1989), has resulted, at the university, in an awareness of learning difficulties in this field. Since 1987
studies on the analysis of these difficulties as well as experimentation of didactic engineering were
developed (Robert & Robinet, 1989), (Dorier, 1990), (Rogalski,1991). Some of the identified
difficulties can be formulated in terms of flexibility, a notion which is now recognised in
mathematics didactics as a key element of conceptualisation.

It seems necessary, here, to distinguish two types of flexibility, according to whether or not flexibility
operates within cognitively hierarchical structures. )

* the first type corresponds to a hierarchical flexibility. It is the case, for example, in E. Dubinsky's
research (Dubinsky, 1991) which is built around the "process-objet" duality of mathematical
concepts and where "encapsulation" and "disencapsulation" processes allow mathematical work to
sail between the two levels. A Sfard's research (Sfard, 1991) similarly emphasises on the double
dimension "operational" and "structural" of mathematical concepts and the necessary flexibility
between these two dimensions, even though, the first dimension is the necessary preliminary to the
second one.

We can also find this kind of flexibility in D.Tall's research who underlines the two reading levels
which can be associated to the same mathematical symbol via the notion of "procept”. One can
finally find it at stake in the three levels distinguished by Hillel and Sierpinska (Hillel & Sierpinska,
1994) in the reference to Piaget and Garcia's work in a recent research on linear algebra.

® The second type corresponds to a non-hierarchical flexibility. Such a flexibility is particularly
considered through analysis in terms of "setting" as introduced by R.Douady (Douady, 1986, 1992)
or in terms of "register" as introduced by R.Duval (Duval, 1993) as well as in terms of "changing
viewpoint " used by a few authors, (Rogalski, 1991) for instance.

Our research in linear algebra situates within this global problematics of cognitive flexibility. More
particularly, our interest will be focused on the second aspect of flexibility: the one of non-
hierarchical flexibility.
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II. SETTING, REGISTER AND VIEWPOINT NOTIONS
1. Setting notion

This notion was introduced by R.Douady in her thesis and based on an epistemological analysis
emphasising on:

- the duality of mathematical concepts, first implicit then explicit tools of mathematical activity
before they take the status of object and are studied as such;

-the role played by changes in settings in the mathematical production activity.

This epistemological analysis leads her to transpose these features into the didactic field through the
notions of tool/object dialectic and setting games (Douady, 1986,1992)

Therefore, a setting is defined as being "made of objects of some mathematical branch, of
relationships between these objects, of their eventually various formulations and of mental images
associated with these objects and relationships [...] Two settings can comprise the same objects and
differ in mental images and/or in terms of developed problematics”. The change in settings " is a
means to obtain different formulations of a problem that, though not necessarily equivalent, allow a
new access to the difficulties encountered and the elaboration of means and techniques which did not
appear necessary in the first formulation. Anyhow, translating one setting into another often leads
to unknown results, to new techniques, to the creation of new mathematical objects, in fact to
the improval of the initial setting and the other intermediary settings used”.

Setting games, as organised by teachers, are didactic transpositions of these processes. They are seen
in the developed theory as privileged means to raise "cognitive desequilibrium® and also to allow the
overcoming of these and the reach of higher equilibrium.

Therefore, the setting notion emphasises the idea that the same concept is meant to function in
various environments and that its functioning in each one of these environments offers specific
features. The existing differences are just means and tools of mathematical creation.

As far as linear algebra is concerned, introducing the first concepts (generated space, linear
dependence and independence, equality and intersection of subspaces) is often made by only using
the  R® subspaces. Moreover, teaching favours the two and three dimensions which allow an.
emphasis on the game between the algebraic and geometrical settings and give way to cognitive
flexibility which later become more metaphorical in higher dimensions or in more general spaces. In
our study, we consider two settings: the algebraic one and the geometrical one.

2. Register notion

The setting notion is about the whole functioning of a mathematical concept while the register
notion, which comes from the linguistic area, is more particularly about the symbolic representations
according to which it can be represented and studied. R.Duval underlines the role played by this
semiotic dimension in the conceptualisation process. In other words, the distinction between object
and semiotic representation, which depends on the possibility to associate to the same concept many
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different representations and to carry out conversions between these representation systems, is
considered as a strategic knot in the conceptualisation process.

For Duval, the semiosis, that is to say the semiotic representation’s apprehension or production, and
the noesis, that is to say the conceptual apprehension of an object are inseparable. He defines a
representation register as "being a semiotic system which makes possible the three basic cognitive
activities that are linked to semiosis.

1 - Forming a representation identifiable as a register representation. This implies selection of
features and data in the represented content, selection which is done according to the units and
forming rules of the register in which the representation is produced.

2 - Treating a representation, that is to say transforming this representation in the same register
where it was formed.

3 - Conversing a representation, that is to say transforming it into a representation of another
register while keeping the whole content of the first representation or only a part ofit".

R.Duval underlines that, as far as teaching is concerned, activities concerning thg formation and
treatment of representations are present but conversion activities are often neglécted, as if
conversion tasks between two registers were automatically mastered by someone who knows each
register, separately.

In our study, the following registers of semiotic representations will be more particularly considered:
intrinsic symbolic representation, coordinates representation, equation representation, matricial
representation.

3 - Viewpoint notion

Mathematicians' work requires other kinds of flexibility, particularly, what we call "changing
viewpoints” and is not so easy to define in a general way. Therefore, linear algebra seems to require
flexibility between what we call the "cartesian" viewpoint and the "parametrical" viewpoint.

Such flexibility acts both in the geometrical and the algebraic settings and, even if it relies on
flexibility between semiotic representations, it does not seem reducible to a mere semiotic flexibility
as it involves more global aspects. For instance, the vector subspace notion may appear under a
parametrical viewpoint with a stress on generating elements which characterise the subspace
elements or under a cartesian viéwpoint with a stress on algebraic equations which characterise the
subspace.

Of course, in that case, the cartesian/parametrical flexibility puts at stake flexibility between
representations, particularly between:

¢ intrinsic parametrical representations, such as: A = lin{a,b} = {v/ v=aa +8b};

 explicit parametrical representations under the form of a table, such as:

A=1in{(1,0,0), (0,1,0)} = {(xy,2) € R /x=a,y=B};

* intrinsic cartesian representations, such as: A= { v/ T(v) =0 }, T being a linear operator;
 explicit cartesian representations (by homogenous and linear equation systems), such as:
A={(xy,z) € R/z=0}.

O
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But we hypothesise that flexibility between the parametrical and cartesian viewpoints, which involves
for instance the idea of duality, goes beyond a mere control of these semiotic conversions.

4. A study on linear algebra focused on cognitive flexibility between registers

K.Pavlopoulou's thesis (Pavlopoulou, 1994) is directly situated in the prospect developed by

R.Duval. Its deals with the learning of elementary vector notions: linear combinations, linear

dependency and independence in R* and R®. Three semiotic representation registers are considered:

« the graphic register (G): in which a vector is represented by an arrow in R and R’

+ the symbolic writing register (S): in which a vector is represented by the linear combination of
any two or three vectors in R or R,

o the table register (T): in which a vector is represented by a column matrix with two or three lines.

An analysis of beginners' linear algebra textbooks shows that, in general, different registers coexist
but conversion problems between registers are not explicitly set up in terms of learning. Moreover,
there are kinds of conversions highly privileged.

K. Pavlopoulou organises a didactic sequence with students in difficulty (those who have failed their
traditional programme). Her purpose is to emphasise the co-ordination between registers by
following a classical experiment scheme: experimental group, control group, pre-test, post-test. She
confirms the difficulty of a spontaneous building of conversion knowledge and proves the positive
effect of the experimental didactic sequence, positive effect which goes beyond pure conversion
tasks.

II. OUR RESEARCH PROJECT ON FLEXIBILITY IN LINEAR ALGEBRA

In our research, we try to study, more particularly, articulation problems between different systems
of symbolic representations in linear algebra in the frame of the global study of flexibility between
two viewpoints: the cartesian and parametrical viewpoints.

This project is based on a first piece of research (Dias, 1993) concerning the evaluation of a didactic
engineering proddct (Dorier, Robert, Robinet, Rogalski, 1994) on linear algebra for first year
university students. Our evaluation was focused on the central notion of the experimental teaching;
the ra_nk notion. Our attention was, then, draw to the difficulties students had found with the
articulation of cartesian and parametrical viewpoints required to solve problems of determining
vector system ranks and vector space representations. These difficulties were at the root of our
present problematics.

1. The global project

In order to tackle these problems, we cross different approaches:

1 - an a priori mathematical analysis of both technical and conceptual knowledge linked to this
flexibility, for the different notions and tasks involved in a first course of linear algebra;

2 - an analysis of the way these flexibility problems are taken into account through a study of
curricula and textbooks, including a comparative study of the French and the Brazilian situations;
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3 - a study of the cognitive functioning of students aiming at the identification of key-stages and
difficulties in this area;

As far as methodology is concerned, our research is based on an analysis table of flexibility, issued
from the first part of the research and on diagnostic tasks which aim at evaluating the students
capacities concerning flexibility.

Our research is meant to emerge to a didactic engineering project aiming at a more efficient
management of these issues since the first year at university.

2. The analysis table of flexibility

The purpose of this table is taking into account, as we said before, the flexibility between cartesian
and parametrical viewpoints. It is obvious that this flexibility is based on flexibility between the
different registers of representations associated to these viewpoints. It is also based on quite a
number of conceptual and technical knowledge.

The analysis table is meant to be a tool useful for analysing the knowledge linked to the flexibility
which is necessarily or potentially at stake in elementary linear algebra:

¢ according to the involved linear algebra notions;

¢ according to the tasks that are usually encountered at this level,

= according to the variables of these tasks, particularly the representation registers at use.

© At the level of notions, we distinguish the following notions:

- vector space;

- vector subspace and operations between subspaces (including linear combination, generated
subspace, identity, intersection, sum, direct sum of subspaces, supplementary subspaces);

- basis and dimension (including linear dependence and independence, rank),

- linear application (including kernel and image, isomorphism, linear operator's matricial
representation);
- linear equations system.

® At the level of tasks, for instance, as far as the notion of vector subspace and of operations
between subspaces are considered, we distinguish the following tasks:

- Check with the definition whether a vector space's subset is a subspace or not;

- Describe the solution's subspace of a linear and homogeneous system;

- Determine whether an object defined in a certain way belongs to a subspace defined in another way
or not.

- Demonstrate that a vector is or is not a linear combination of some given vectors;
- Check whether a vector belongs to the subspace generated by other vectors or not;
- Characterise the subspaces generated by given vectors;

- Find a generating part of a set of given vectors or a given subspace;

- Move from a kind of representation to another;

- Demonstrate that a subspace is included in other one or that they are equal;

- Determine the intersection of two subspaces;

- Determine the sum of two subspaces;

- Demonstrate that two subspaces are in direct sum;

- Demonstrate that two subspaces are supplementary.
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® And at the level of the variables of the task, for instance, for the task: "Demonstrate that two
subspaces are equal", we distinguish the following variables:

- type of space: R and R, R, R® isomorphic spaces, others;

- types of given representations: parametrical or cartesian with sub variables in order to take into
account the different kinds of possible representations en each category (cfI11.3);

- types of required representations: idem

- dimensions of space and subspaces involved :

- flexibility: compulsory or potential

- flexibility knowledge: with distinction between technical and conceptual knowledge (see below)

3. Analysis of University first year exam.

» The context: We have used this analysis table of flexibility in order to analyse a written exam
taken in 1992/93 by 113 students after their first semester course, at the university of Lille. The
linear part of this exam consisted of four questions:

In R are gjven the following vectors:

a=(0,-1,1,0);, b=(2,1,1,05; ¢=(0,0,3,1)

d=(2,0-1-1); e=(1,0,1,1); f=(1,0,0,1)"

1) What is the rank of the vector system {a,b,c,f}?

2) Give a parametrical representation and a linear equations system for lm{a.,b c,d}.

3) Determine: ) lin{a,b,c} N lin{a,e}; ) [lin{a,e}+lin{a,c,e}] N lin{a,b,c};

4) The system {2y+2t = o, -x+y = f; x+y+3z-t = v; z-t = §, have a solution for all (a,8,7,5)? Justify
your answer without any calculations.

In this report, we have chosen to analyse questions 2 and 4 because they are more significant in
showing the difficulties of flexibility both at technical and conceptual level.
For question 2, the variables of the task are the following:

- type of space: R

.| - type of given representations: 4 vectors represented by their coordinates in the canonical basis and
an intrinsic symbolic notation of the generated subspace

- type of required representations: a patametrical representatlon and a cartesian representation;

- space and subspace dimensions: 4 and 3

- compulsory/potential flexibility: If the expression “find a parametrical representation” is understood
as: "find & minimal parametrical representation”, flexibility is strongly necessary. But students can
produce the trivial parametrical representation {xa+yb+zc+td=0/ x,y,zt € R} and solve the
associated linear system (xa+yb+zc+td=v, in order to find the cordition of « —8 — +38 =0 for

v = (a,B,7,8)) which gives directly the cartesian representation. If so, flexibility remains necessary
but it is reduced.

- flexibility knowledge: here it appears tightly linked to knowledge related to the resolution of linear
systems, more precisely to the relations made between resolution conditions/cartesian representation,
rank of the linear system/rank of the vectors system, number of necessary parameters/number of]|
necessary equations with the fundamental theorem linking these two numbers.

Moreover this necessary flexibility can function at different levels. It can function at a technical level,
encapsulated in some way in algorithmic processes or at a more conceptual level.

The same type of a priori analysis can be applied to question 4 but, in this question, as the answers
have to be justified without any calculation, a conceptual level of flexibility is required.
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o The data analysis

Question 2: For this question, 34 different procedures were identified. Here, we shall focus on the
procedures P and Q which are in some way the typical erroneous procedures and correspond to 38%
of the answers. With some local variations, the procedure P is the following:

- to write the matrix whose lines are given by the coordinates of a,b,c,d;

- to write the associated linear system: {-y+z = 0; 2x+y+z = 0; 3z+t = 0; 2x-z-t = 0}, seen as a
cartesian representation of the subspace;

- to apply the familiar Gauss method to this system. This leads to a parametrical representation
depending on one variable, as there are infinite many solutions, for example: x=2z,y=z,t=3z.

These cartesian and parametrical representations are internally coherent but they are incoherent with
the results of question 1 (rank(a,b,c,f) = 4) and the obvious independence of each pair of vectors.
The erroneous procedure Q is similar (with columns instead of lines) and it leads to similar results.
The procedures described in the a priori analysis represent only 38% of the answers, that is to say 43
students, half of them just giving the trivial parametrical representation.

It is worthwhile noticing that among the 57 students who first looked for the rank of {a,b,c,d} and
correctly found 3 by using the familiar Gauss technique, very few were able to correctly exploit this
result in order to give a minimal parametrical representation. Some of them, for instance, give the
relationship: d = a+b-c as a cartesian representation of the subspace, or this one: d = ax+by-cz as a
parametrical. Most of them jump to P or Q procedures.‘ .

We have found only 6 students who tried to check their final results, that is to say, the number of
parameters to be used and the number of equations to be found, as expected by the didactic contract.
Among these students, only one had got the correct representations but he failed to identify which
one was the parametrical representation and which one, the cartesian representation. So, he provided
the following wrong justification: "We are in R®, where lin{a,b,c,d} is represented by three
independent linear equations therefore dim(lin{a,b,c,d}) = 1. Only one parameter is sufficient". The
five other students which had used P and Q procedures also found: dim(lin{a,b,c,d}) = 1. They
suggested the relation: dim(lin{a,b,c,d}) = n-r as a means to justify such a result, n being the
dimension of R* and r the rank of the vectors system.

Question 4: Only 20 students gave correct answers to question 4 and once more we were surprised
by the variety of procedures used by students. Among them, 55 recognised the given system as
associated to the equation: xa+yb+zc+td = 0, but many did not know how to use this result to give a
right and justified answer. This is understandable, taking into account the results obtained for
question 2 and the fact that a conceptual flexibility was compulsory here. The attachment to Gauss
technique was so important that 13 students used it explicitly and 7 students used it implicitly
without respecting the instructions.

IV. CONCLUSION.

These results confirm our conviction that flexibility between cartesian and parametrical
representations has a fundamental role to play in the learning of elementary linear algebra and that
this flexibility cannot be reduced to abilities of a mere semiotic type. It has both conceptual and
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technical components which intertwine in the solving process, the conceptual dimension playing an
essential role in anticipation, control and interpretation processes.

These results also show that this flexibility is not of an easy access and that students tend to reduce it
to its most algorithmic aspects and, as a consequence, to be trapped by all kinds of possible formal
skid. This confirm our hypothesis that flexibility competencies cannot be left to the student personal
effort. They have to be explicitly taken into account in the teaching process and managed in the long
run. The ambition of our research project is to provide tools in order to better understand how this
flexibility is or can be at stake in a first course of linear algebra and to manage it more efficiently.
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ANALGEBRAIC INTERPRETATIONS OF ALGEBRAIC EXPRESSIONS
— FUNCTIONS OR PREDICATES?
Hava Bloedy-Vinner
Hebrew University, Jerusalem, Israel

Abstract: Algebraic language is analyzed and compared to natural
language. The term analgebraic is defined. A conceptual framework

is suggested for students" interpretations of algebraic
expressions. New explanations for various phenomena, including
the “"students and professors® reversal error, are given,

illustrated by students' written response and interviews.

1. Introduction

This paper presents a part of a study which suggests a
conceptual framework for dealing with phenomena related to
students' difficulties with the symbolic language of algebra.
Kaput (1987) discusses the influence of natural language rules on
translation errors in algebra. In my study I try to systematically
analyze the structure of algebraic lanquage, compare it to the
structure of natural language, and learn about the influence of the
latter on the understanding of algebraic language.

The term analgebraic (Bloedy-vinner 1994) will be used to refer
to modes of thinking related to improper use of algebraic language.
The .word algebraic here will refer to correct use of algebraic

“language. The definition of analgebraic depends on the mathematical
context. In this paper I will discuss analgebraic mode of thinking

in the context of interpreting algebraic expressions.

2. Comparing algebraic and natural language

As we shall see, analgebraic interpretations of algebraic
expressions are related to erroneous analogy between algebraic and
natural language. To explain this analogy let us start with a
comparative analysis of both languages. The structures to be
analyzed and compared are natural language sentences e.g. "She
likes Bill's friends", and equalities and inequalities as x-2=8y or
2+52>3. The constituents of these structures in both languagés are:
1. Primitive nouns like "she®, "Bill" in natural language, and
numbers or letters like 2, 5, x, y in algebraic language.
2. Complex nouns like "Bill's friends", x-2, or 2+52, which contain
other nouns as constituent parts. When some of the constituent
nouns are replaced by empty places, e.q. "_'s friends", -2, or

_+ 2, we get functions. Functions create complex nouns when

O
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substituting nouns for the empty places. In algebra we use letters
instead of empty places and get algebraic expressions, which are
functions and create numbers (complex nouns) when substituting
numbers for the letters.

3. When we replace nouns in a proposition by empty places we get
predicates, like *“__called", “_likes__", _=_, and __<__

(Relation is another term for two-place predicate.) Predicates
state something about pouns which are substituted in them.

The structural similarity we have seen points to some correct
analogy between natural and algebraic language. To describe the
erroneous analogy made by students, we need to look at some
differences.between both languages. We shall look at two aspects:
1. The aspect of richness: Natural language is rich in noun types
and in predicates, while algebraic language has one noun type only,
numbers, and two (two-place) predicates, equality and inequality.
Wwhen we use natural language to make algebraic statements, we have
many additional predicates like "__ is positive", "__ is even” etc.
To express these verbal predicates with algebraic symbols, we have
to do with algebra's two predicates. The richness of algebraic
language, on the other hand, is obtained from its ability to
compose functions, and to create nouns which are much more complex
than those of natural language.

2. The aspect of precision: Natural language can be ambiguous and
has vague meanings, while algebraic language is unambiguous and
precise.

It turns out that students often make an erroneous analogy and
use algebraic language as if it had the properties of natural
language with regard to both aspects of richness and precision. In
the following sections we shall see this erroneous analogy and how
it results in analgebraic interpretations of algebraic language.

3. Analgebraic interpretations of algebraic expressions

In this section I will discuss one form of analgebraic
interpretation of algebraic expressions. As.-we shall see, this
interpretation can explain phenomena related to students’
difficulties with pure algebraic tasks as well as with word problem
translation tasks. This form of analgebraic interpretation
consists of two misconceptions which are related to each other:
1. when we consider an algebraic expression as a function, the

2—43

ol -



origin and the image should be conceived as two separate entities.
Instead, students sometimes identify these entities and see them
vaguely as one entity, being changed by the function, 1like a
growing child, or an object which is painted but remains the sgame
object. For example, in the expression |x| the origin and the
.image are vaguely conceived as one changing entity (rather than a
pair of separate entities), so that x becomes positive by the
function, and still remains x. The vagueness here is one example
of erroneous analogy between the langquages.

2. An algebraic expression should be interpreted as a function
which creates a new number. Instead, students may interpret it as
a (one-place) predicate, stating something about x. For example,
|x| is interpreted as a predicate stating that "x is positive".
This misconception is related to the previous one: the origin and
the image are conceived as one entity, and an obvious property of
the image, in this case positiveness, ‘is attributed to x. Thus the
expression is interpreted as the predicate "x is positive"”, rather
than a function creating a new number which is positive.

With this conception, the student borrows algebraic expressions and
uses them as predicates rather than functions. The result is an
"enrichment” of algebraic language by additional predicates. This
is another erroneous analogy between algebraic and natural
language, by-which algebraic lanquage is made similar to natural
language, namely, rich in predicates.

4. Method

The purpose of this study was to examine to what extent students
were algebraic or analgebraic in their interpretations of algebraic
expressions in the sense described above. For this purpose 1
compiled the questionnaire which is presented in figure 1.

The questionnaire was administered to Israeli students at a
university preparatory course. These students had taken 3-5 unit
matriculation exams in mathematics (a unit is one weekly hour
during 3 years of high school). They answered the questions after
having restudied the related material in -the course, at the end of
which they repeated the matriculation exam. By a rough estimate,
more than -half of high school graduates are on their mathematics
level or below. Results will be given for two groups: Group SCI
preparing to study science at the university, repeating 4 or 5 unit
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exams, and grodp SOC preparing to study social studies, repeating
the 3 unit exam. Some students in the SOC group were interviewed

after answering the questionnaire.

Figure 1: The questions administered in the study.

1. Which of the following forms mean "X is negative"?
(you may circle more than one answer):
a. —-|x| b, -x c. x<0 d. —x? e. -Xx<0
2. The temperature a tonight was negative, but was still 5
degrees higher than the temperature b of last night. Which of
the following equations expresses the claim made above?
a. a=b-5 b. -a=-b+5 c. -a=b+5 d. a=b+5
e. —a=-b-5 f. —a=b-5 g. None of the above.
3. The teacher asked the students to compose a table for the
function y=0x+2. Danny said that x was always zero and y
was 2. What is your opinion? (correct, incorrect, explain).
4. What are x and y's solutions in the equation: 0x+5y=10 ?
5. What do you think of the following statements:
a. In x+10, 10 was added to x, therefore it is now larger.
b. In 10x, x was multiplied by 10, therefore it is now larger-
6. Write an equation to represent the following statement: There
are 6 times as many students &s professors at this university.
Use S for the number of students and P for the number of
professors (Rosnick & Clement 1980).

5. Results

For all questions, answers were classified into 3 categories:
algebraic, analgebraic, and other errors (which may be analgebraic
too, but in a different sense). These categories will be described
specifically for each question. Distributions of answers are
reported in table 1.
Questions 1 and 2: These questions deal with expressions with a
minus sign. For both questions the analgebraic category includes
answers demonstrating the two misconceptions described previously:
first, the origin and the image of expressions with a minus sign’
(-|x{, -x, -x?, -—a) are vaguely conceived as one entity, as if x
changes and becomes negative. Second, the expression is
interpreted as the predicate "X is negative" rather than a function
creating a new number. (These misconceptions should not be confused
with that of seeing —-x as negative regardless of the value of X.)
In question 1 the student is given expressions (functions) and
inequalities (predicates), and is required to circle those which
have the meaning of the verbal predicate "“x is negative". The

algebraic category includes x<0. All other answers are analgebraic,
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because

students chose inequalities and expressions together.
that they understood that the question was about x

the

expressions were functions and not predicates.

answer -x<0

combines

they

x<0

origin x and the

interpret

(chosen by 33% in SOC):
and -x; because
image -x, the student

expressions as a predicate.

and

this

is not

contradiction between "x is negative" and -x<O0.

Table 1: The distribution of the answers.

response

aware

Most of the

This implies

not about

result being negative, and that they did not understand that
Note especially the

vaguely

of the identification between the

of the

question| group algebraic|analgebraic{other errors|no answer
1 SCI n=50 34% 66% 0% 0%
SOC n=33 9% 91% 0%- 0%
2 SCI n=49 43% 45% 10% 2%
SOC n=33 21% 61% 15% 3%
3 SCI n=50 68% 32% 0% 0%
SOC n=33 18% 73% 9% 0%
4 SCI n=48 65% 21% 9% 6%
SOC n=34 50% 32% 18% 0%
5a |SCI n=49 10% 90% 0% 0%
SOC n=40 17.5% 77.5% 0% - 5%
S5b SCI n=49 12% B8% 0% 0%
SOC n=40 12.5% 77.5% 0% 10%
6 SCI n=49 84% 14% 2% 0%
SOC n=33 52% 45% 3% 0%
To see that students really meant to state something about x (and

not about the
interviews (8§

Interview 1:
n (B) .
negative, x is negative,

S: In

problem 1.

result

of the

expression)

(Written response. a. —|x|

we can see that it is
this is what

I: Who? S: The x, I: Yes. S:

because it says that x is less than 0.

Interview 2: (Written response: a. —|x|
§:  (Pointing at —x<0)...this is also negative! I: What? §:

b..

let us

is student, I is interviewer):

b.
minus x, therefore it is

-X c. x<0

we're asked

X c. x<0

Why? 8: Because it's less than 0, and negative too.

Question 2
translating

deals

a word

problem.

with the meaning of

-a in the

look

at some

d. -x?2.)

about in

In (c) it's also negative

e, —x<0.)
x. I:
context of

The algebraic category includes the

response “(g) none of the above, it should be a=b+5 and

O

ERIC

Aruitoxt provided by Eic:

54

2—46

a<0", and



[E

O

"(d) a=b+5" (or (d)+(e) of students who noticed that these were
equivalent). .The category of other errors includes the response
"(a) a=b-5" (or (a)+(b)) which is a reversal error (discussed in
section 6.) All responses with one equation with -a are in the
analgebraic category. These students see the origin a and the
image -a as one entity, the temperature, and use the expression -a
to translate the predicate "a is negative". to illustrate this
claim let us look at one of many similar interviews:

Interview 3:‘(Written response: c. —a=b+5.)
S: The temperature tonight is —a., I: -a. But is says here that
the temperature was a. S: But it was negative! I: That is why you

wrote —a?. S: Yes. I: a itself represents a negative or a positive
number? S: Negative. I: That's why you wrote minus here? S: Yes.
Questions 3 examines the interpretation 6f 0x as a predicate
staéing that "x is 0", which follows from seeing the origin and the
image as one entity which changes and becomes 0. Answers like
“wrong" or ‘"wrong, X can be any number" were included in the
algebraic category. Answers which justify Danny's statement were
included in the analgebraic category. About one third of these
answers gave explicit explanations like: "correct, when we multiply
a number by 0 it becomes 0".

For question 4 the answer x=0, y=2 is.a familiar phenomena. It was
classified as analgebraic. The misconception revealed in question
3 can be one of its explanations, (Other errors include the
answer: y=2, X has nd solution.) .

Question 5 examines the meaning of 10x and x+10. Answers to both
parts were classified in the same way: the algebraic category
includes answers like ‘'wrong" or ‘wrong, X is not larger, the
result of the expression is larger." The analgebraic category
includes answers justifying the given statements (for all x or for
positive Xx). These statements imply that the origin and the image
of the expression are one entity: X is conceived as changing and
becoming larger. More than half of these answers expressed this
conception explicitly: "true, multiplying x by 10 makes it larger”,
or "it's correct only if x is positive. 1f it is negative, it
becomes more negative", or "when we add 10 it does not change x
because there is no relation between x and the 10; but when we
multiply x by 10 we add x's to it, therefore it becomes larger.®
The last quote shows that the student really thinks that x becomes
larger, and that it is not just a matter of vague formulations.
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6. Back to "students and professors" reversal error

The misconception just described may lead to an interpretation of
algebraic expressions which can explain the reversal error in the
"students and professors" problem of Rosnick and Clement (1980)
(éee question 6). All explanations proposed in literature before
1993 for this error, were based on interpreting letters as objects,
sets of objects, word abbreviations, or labels rather than numbers,
and on the influence of problem word order (Rosnick & Clement 1980,
Clement et Al. 1981, Davis 1984, Mestre 1986, Kaput 1987).
MacGregor and Stacey (1993) claim that students represent on paper
cognitive models of compared unequal quantities, which do not
depend on problem word order. Crowley, Thomas, & Tall (1994) claim
that the order of symbols in the equation depends on process vs.
concept orientation of the student.

In my study I found evidence for the above explanations of the
reversal error, but also for a new explanation, related to the
misconceptions described in this paper: Letters are perceived as
numbers; in 6S the origin S and the image 6S are conceived as one
entity, the number of students, which is changing and becoming 6
_tiﬁes larger, so that S is now 6 times larger. This leads to the
interpretation of 6S as the predicate “S is 6 times larger". (Note
‘that this is a vague one-place predicate, not paying attention to
the question larger than what.) The answer 6S=P is interpreted as
a table with the (unequal) numbers of students and professors on
both sides. The answer 6S+P adds up the number of students 6S and
the number of professors P. Both answers include 6S as stating the
predicate "the number of students is 6 times larger". Thus
students who cannot use algebra's predicates to translate the (two-
place) predicate "S is six times as large as P", use 6S as a (one-
place) prédicate, erroneously enriching their algegraic language,
making it like natural language. '

Unlike other explanations in literature, this explanation works

well for reversals of other arithmetic operatiohs as well.

In question 6 correct equations were classified as algebraic, while

all reversals, e.g. 6S=P,~6S>P, Q=6S+P, were analgebraic. Other

errors include non reversal like S=P or 6P>S.

Let us look at some interviews for illustration of the above claim:
Interview 4: (Written response: 6S>P.)

§: Here I understood that the number of students is § and that §

O
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is 6 times as large as the professors, so the number of

professors is P and 6S 1is larger than P. I: That is, 6S

represents that... $: That this is the number of students.

Interview 5: (Written response: 6S students, P professors,
O the whole population, Q=6S+P.)

§: 1 took Q as the whole university population, then it equals

the pnumber of students plus the number of professors. I: OK, and
what is S in this problem? §: f students!

7. Conclusion

In this paper I dealt with an analgebraic mode of thinking in
the context of interpreting algebraic expressions. It consists of
two misconceptions: the identification of origin and image as one
entity, and the interpretation of expressions as predicates rather
than functions. We saw how these interpretations explain certain
phenomena, including reversal errors in translation. )
The results of the research show that there is a high rate of
analgebraic thinking. We should remember that the study was
performed in a ﬁopulation of high school graduates and that the
questions were administgred to them after finishing the algebra and
functions chapters at a university preparatory course. This shows
that normal instruction does not uproot these misconceptions, and
that special treatment is needed. It seems that the conceptual
framework given here can explain the misconceptions and their
origins and set the ground for ﬁreatment suggestions.
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STUDENTS’ RESPONSES UTILISING THE PROCEDURAL AND STRUCTURAL ASPECTS
OF ALGEBRA

Carmel Coady University of Western Sydney, Nepean

Cognitive research aimed at determining the components of aigebraic thinking in students has
become the focus of attention for many mathematics educators. One finding that has seen general
agreement among such researchers is that mathematical concepts may be acquired in two ways. i)
‘procedural’ (Kieran 1992) or ‘operational’ (Sfard 1992) or ‘process’ (Dreyfuss 1990 and
Dubinsky 1991) and ii) ‘structural’ (Kieran 1992 and Sfard 1991) or ‘object’ (Dubinsky 1991),
with Sfard stating that a ‘deep ontological gap’ exists between the two. .
The purpose of this paper is to examine this ‘gap’ by analysing the responses of four students to
two mathematical questions selected primarily because their solutions may be obtained by utilising
either a ‘process’ or an ‘object’ view of algebra. The four students mentioned above were part of a
much broader study of algebraic concepts conducted using first-year university students who had
recently completed six years of secondary schooling. The results obtained from these supposedly
‘experienced’ students of algebra appear to indicate that, although they have had repeated
exposure 1o both aspects of algebra, this ‘gap’ still exists with the possibility of a ‘bridge’ berween
the two, in many cases, being extremely remote.

Introduction

It is the firm belief of several educationalists involved in mathematical research that students ﬁcquirc
algebraic concepts from both a ‘procedural’ (or process) perspective and a ‘structural’ (or object)
perspective (see for example Kieran 1992, Sfard 1991 and Dubinsky 1990). For the purposes of this
discussion, Kieran’s definitions of these terms have been adopted. She defines the term ‘procedural’
to infer “... arithmetic operations carried out on numbers to yield numbers” (p. 392), while the term
‘structural’ incorporates a set of operations performed on algebraic expressions rather than numbers.
Features of both conceptions are listed by Sfard (1991): “... the structural conception is static,

instantaneous and integrative, the operational is dynamic, sequential and detailed” (p. 4).

The characteristics of the acquisition of algebraic concepts in association with the notion that
‘transition’ from a ‘process’ conception to an ‘object’ conception is not achieved quickly or easily
(postulated by Sfard, cited in Kieran 1992) provided the impetus for the present study. The research

questions formulated were:
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a) To what extent are these two views of algebra still prevalent in older students who have
completed their fundamental algebraic instruction?

b) Given that both aspects exist, is there empirical evidence that mirrors Sfard’s descriptions?

¢) To what extent do students appreciate the connection between the two conceptions, or are they

seen as representing two totally separate ‘categories’ of algebra?

Methodology and Sample

In order to address the research concerns mentioned above, one hundred and twenty eight first year
university students were given several questions requiring written responses intended to elicit their
understanding of algebraic concepts from the ‘procedural’ and/or ‘structural’ standpoint. Ten
students were asked to attend a follow-up interview of approximately one hour’s duration, during
which each was required to repeat the questions while verbalising their reasons. Each of the ten
interviews was audio-taped and later transcribed verbatim. It is not the intention of this paper to
report on the overall results of the entire sample but rather to present four mini case studies that

clearly distinguish between the two conceptualisations being explored.

Frank, Rod, Barbara and Paul, the four students discussed in this paper, were enrolled in
mathematically-based science degree programs. All were 18 years of age and had just completed the
2-unit mathematics course during their final two years of secondary school. This particular
mathematics course consists of substantial calculus and algebra components with students being
exposed to the associated material for six, forty-minute periods (or equivalent) per week. Because
one of the primary goals of secondary school education is to promote and instil in students the
structural aspects of algebra, it seemed reasonable to include in the sample those students who had
completed their elementary algebra training and who had also been exposed to algebraic concepts in

a variety of contexts over several years.

For the purposes of this paper, two questions only have been selected and the students’ responses to
these, both written and verbal, are now analysed and discussed in some detail. It must be noted that
both the questions chosen could have been solved quite readily employing techniques involving either

or both aspects of algebra under consideration.

O
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Results and Discussion
Question 1: Given V =nr?h.

a)Find V, given n= % r=2,h=7

b) Find V, given it = same as in a), r = same as in a), h = double the value in a).
c) Find V, given © =same as in a), 7 = half the value in a), & = same as in a).

d) Find h, given V =same as in a), T = same as in a), 7 = half the value in a).

The four responses given to this question together with some suggested reasons are considered

collectively, as all were identical.

Each of the four students chose to substitute numerical values for the variables V, r and h (where
appropriate). Since all treated each of the four parts of the question separately, tedious and
repetitive calculations became a feature of the responses given. Prompting by the interviewer to re-
examine the question, in the hope that the relationships existing Between each part of the question
would be identified, was ignored. The interviewer even suggested that an alternative method of
solution may be applicable. However, this was also rebuffed with the students stating emphatically
that in order to answer the question, numbers corresponding to the conditions stated in each part had
to be used. Hence all students, although actively involved in the processing of an algebraic statement
containing numbers, were completely unaware that their workload would be considerably reduced
had the relationships bétween the variables used and also within the question itself been identified

and utilised.

Question 2: Determine the effect on the

a) volume of a sphere (V = %nr’)

b) surface area of a sphere (A = 4nr?)

if the radius is doubled.

O
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This question evoked qualitatively dissimilar responses from all four of the students being discussed
here. An analysis of their answers together with the verbal reasoning behind them revealed

distinctive cognitive patterns underlying each response.

Frank
Frank’s answer to this question was quite banal - “it will increase”. When urged to try and quantify

this response in some way, Frank’s denial was insistent:
No we cannot work out by how much unless it [r] is defined.

He made absolutely no attempt to select possible values for r as he was convinced that numerical
values had to be stated in the question before the magnitude of the effect could be determined.
Frank’s superficial answer seemed to indicate that he could not fully engage in the processing needs
of the question and, therefore, chose ‘the easy way out’. However it could be argued that Frank had
in fact fulfilled the requirements of the question as he interpreted it, since he did state ll;e ‘effect’ on
the volume/surface area. Furthermore, the fact that additional probingA proved futile, appears to

indicate that Frank’s logical skills did not extend much beyond the obvious.

Rod
Rod’s answer to both parts of this question was that the volume (or surface area) “doubled”. When

asked the reason for this, Rod replied (with regard 10 part b)):

Well ... if the radius of the sphere had doubled, you'd get a larger sphere so
therefore the surface area would be two times as great.

Rod’s working showed that he had merely inserted a ‘2’ into the formula. Therefore, although he
had no knowledge (in terms of a numerical value) of the surface area of a sphere with radius r, he
knew that if the radius was doubled, then the sphere became larger by ‘twice’ the amount. In other
words, he multiplied the original (albeit unknown) volume/surface area by two. Clearly Rod had
seized upon orie aspect of the question only and had deduced (incorrectly) a conclusion based on this

single piece of information.

Aruitoxt provided by Eic:



Barbara
Barbara’s method of solving both parts of this question involved the substitution of values for r. Her
choice of this method appeared to be based on intuition as the following extract (also typifying her

response to part b)) indicates:

I would substitute values here, first doubling the radius. OK we'll use r = 2 and

r = 4. [With the aid of a calculator she obtained V = 33.5 and V = 268. .respectively].
So, if you double the radius of a sphere the volume of the sphere is increased by
approximately 8 times.

Of particular interest is the wording of Barbara’s conclusion: “ ... the volume [or surface area) is
increased by approximately 8 times [4 times for the surface area]’. The use of the word
‘approximately’ obviously results from the computations made with the aid of the calculator. When
asked whether she could state the ‘exact’ effect on the volume/surface area of a sphere if the radius

is doubled, she replied:

No as whatever values were chosen for r, decimals vwould be involved and only an
approximate answer could be given.

She appeared uncertain as to whether the approximate value would change given a different set of
values for r and hence was reluctant to pursue this line of thought. The most logical explanation for
this was that she had reached a conclusion that she felt satisfied the requirements of the question and

therefore saw no reason to explore other possible solutions.

Paul

Paul was able to spontaneously generalise the phrase ‘the radius is doubled’ into symbols (2r) and
then to substitute this expression into both formulae. Furthermore, he” was capable of correctly
interpreting his answer, exhibiting complete confidence in his belief that the use of the abstract

‘object’ 2r would result in the correct answer.

Substitute 2r and square that [(2r)"] equals 4m.4r* so that just is timesing the
surface area by 4.

Q 62
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Paul’s ability to use and perform operations with the generalised expression 2r, without the need for
a concrete referent such as the substitution of numbers, suggests that he is quite comfortable with the
structural properties of algebra. His immediate recognition of the quantitative effect that doubling
the radius has on the volume/surface area would appear to indicate that his logical skills are relatively
advanced. In order to examine the extent of these skills, Paul was asked to re-do Question 1.
Surprisingly, his response still centred on the use of numerical substitution, even though during this
latter phase of the interview, Paul was again prompted to look for relationships between the different
parts of the question. However, Paul could still not identify any relationship between the parts, nor
did he use a variable expression to obtain a solution. Arguably the cuing effect of the explicitly
stated values for m, r and A may have dominated any impulse to generalise although this appears

contrary to his ‘object’ orientation demonstrated previously in Question 2.

(It should be noted here that Frank, Rod and Barbara were not asked to re-do Question 1 after
having attempted Question 2. Given their solutions to the latter together with their accompanying

reasons, it was felt that any further investigation of Question 1 would serve little purpose.]

Thus it appeared from the responses given by Frank, Rod and Barbara to both questions, that the
manipulation of numbers in some form or another was mandatory if they were to achieve a
conclusion. However, Paul’s responses to both questions indicated a clear dichotomy in terms of the
solution methods used. As stated earlier, this may be attributed to the nature of the questions asked,
although this inference does lose some of its credibility as further prompting failed to elicit any

association between his two solution procedures.

Conclusion »

This paper has examined both the procedural and structural aspects of solving algebraic problems
from a student perspective. The discussion above clearly illustrates that both means of acquiring
algebraic concepts exist at this educational level, with the ‘procedural’ aspect of algebraic learning,

requiring that numbers must be manipulated, predominating.

Frank, Rod and Barbara provided responses to both questions that manifested the features of a

procedural approach as described by Sfard since their answers tended to be dynamic, in that they
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could seemingly ‘change’ given a different set of circumstances, and sequential, as the solutions were
characterised by step-by-step rather detailed procedures. Frank knew that if the radius increased
then rationally the volume/surface area would increase. However, he was unable to quantify his
conclusion as he was still locked into the procedural stage where he required the substitution of
‘given’ values for . Rod’s answer could be classified as slightly more sophisticated in that he knew
that the resulting volume/surface area would increase by ‘‘double the amount”, after having
multiplied the ‘unknown’ volume/surface area by two. Barbara, on the other hand, while still
needing to work with numbers, was successfully able to integrate all pieces of given information.
This successful integration and hence completion of the problem would also help to explain her
hesitation in corroborating her initial conclusion with any additional numerical support. Finally, with
regard to these three students, it seems reasonable to conclude that, although they each felt the need
to ‘process’ in order to solve the algebraic problems, they clearly displayed differing degrees of
‘procedural’ competence. This is evidenced by Frank’s and Rod’s use of a single piece of
information only in Question 2, while Barbara was able to hold all relevant pieces of information

while formulating an answer.

Paul’s responses to Question 2 tended to be static (he did not feel the need to justify his conclusion
any further), and instanianeous (as he was able to spontaneously generalise “‘double the radius” to
2r) resulting in a complete integration of the question. Once again Sfard’s description of the
structural approach to algebraic problem-solving has been verified. However, his inability to use this
method when answering Question | is somewhat disturbing, perhaps hinting at the possibility that,
although a ‘transition’ from one conception to the .othcr may occur, each may then continue to
develop separately with the initial link between them being forgotten or even lost completely. This
adds a further dimension to Kieran’s (1992) statement: “The transition from a “process” conception
to an “object” conception is accomplished neither quickly nor without great difficulty” (p. 392). In
fact, as demonstrated by this small study, some students may never accomplish this ‘transition’,
implying that Sfard’s ‘deep ontological gap’ between the two aspects may unfortunately never be
totally bridged. This is further exemplified by the responses of the fourth student, Paul, who was
successfully able to manipulate numbers as well as algebraic expressions. Hence the ‘gulf’ between
the procedural and structural aspects of algebraic problem solving appeared to have been ‘bridged’

to some extent. However in Paul’s case, this could be viewed as a ‘one-way’ crossing only as he

o _ 256

ERIC 64

Aruitoxt provided by Eic:



E

was unable to immediately generalise from the particular in Question 1 and thus reduce the otherwise
necessary but laborious calculations. This hints at the possibility that these two perspectives,
‘process-object’, may develop independently of each other with a student often becoming proficient
in using either one or the other interpretation but lacking (or forgetting) the two-way connection

between them.

In conclusion, a final point that should be stressed is that the results of this study have at least two
far-reaching implications for the teaching profession. First, it appears that one of the major goals of
secondary school teaching, that of instilling in students the structural properties of algebra, is not
being achieved for all students. Thus the potential for these students to acquire the necessary
thought processes required for advanced mathematical thinking must be limited, at least to some
extent. Secondly, while a thorough development of both the procedural and structural conceptions is
desirable, the affinity between the two should not be de-emphasised once structural competence has
been achieved. Both play important roles in mathematical activity (Kieran 1992) and hence their
recognition and an awareness of the influence of their interconnection should be continually

reinforced so that a deeper understanding of the principles underlying mathematics is secured.
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WORD PROBLEMS: OPERATIONAL INVARIANTS IN THE PUTTING
INTO EQUATION PROCESS

CORTES Anibal
LabPSYDEE, 46 rue St-Jacques, Paris, France

Errors made by 9th and 10th grade students in putting word problems into equation
were analysed and classified. The classification’of all errors recorded during the experiment has
resulted in only three categories: & - Errors in the construction of mathematical correspondences. b
- Errors that concern the concept of equivalence and that of the unnknown. ¢ - Errors in the
construction of a "calculable” mathematical object.

: The analysis of relationships between errors and the matheratical properties violated
“allows the identification of inherent operational invariants for the putting into equation process.

Research in cognitive psychology concerning word problems has often focused on
the analysis of reasoning by analogy, for example Bassok and Holyoak (1989); Clement J. (1988).

In international publications devoted to mathematical education many authors
analyze the resolution of word problems. The passage from natural language to an algebraic
expression was analyzed by several authors in terms of syntactic and semantic translation,
MacGregor and Stacey (1993) have reviewed this research and focus their work on reversal error.

Several authors analyse the mathematical problem posing processes, Silver E.A.
(1993) has reviewed this research.

Other authors construct methods for the resolution of problems, see Filloy E. and
Rubio G (1993). Rojano T. and Sutherland R. (1993) recommend writing intermediate
mathematical expressions and then construct, by substitution, the equation of the problem. The
intermediate expressions become thus explicit, but the cognitive process underlying the writing of
these expressions remains unexplored. '

The algebraic solving process is not analysed in this article, because: the solving of
equations or systems of equations is made by means of algebraic transformations that end to other
equations that are not, in general, related with the text of the given problem; there is therefore a
detour behaviour in the algebraic solving proces‘s. This conclusion allows us to analyze the putting
into equation process independently of the associated algebraic solving process. The operational
invariants that guide thought in the solving of equations can be found in Cortés (1993).

In this article the putting into equation process (notably the implicit cognitive work)
is modeled in terms of operational invariants.

El{fC‘ 66 2—58

Aruitoxt provided by Eic:



E

O

MC 259"

Aruitoxt provided by Eic:

The theoretical framework and the experimental work.

Our theoretical framework is based on the "Conceptual Field Theory" (Gerard
Vergnaud, 1990). Cognitive behavior is modeled in terms of “schémes". The concept of schéme
was introduced by Piaget and later was further elaborated by Vergnaud, in order to find a model for
the acquisition of complex knowledge, in particular scientific knowledge. According to Vergnaud
(1990): "a schéme is the invariant organisation of behaviour (action) for a certain class of
situations... A schéme is made of four different kind of ingredients: operational invariants,
inference possibilities, rules of action, goals. The representational part is essential”. The
operational invariants are mainly: implicit concepts (concepts-in-action) and implicit theorems
(theorems-in-action).

The analysis and the classification of word problems that appear in secondary school
text books, as well as the analysis and the classification of elementary cognitive mathematical tasks
necessary for putting word problems into equation, provide indices on the implicit nature of implied
cognitive processes. The analysis of relationships between errors and the mathematical properties
violated allows for the identification of inherent operational invariants for the putting into equation
process.

The experimental work: for the past several years we have focused our investigations using 7th
through 10th grade students. In this article, however, we will only discuss the results from the 9th
and 10th grade classes: 25 word problems were given to students (5 different tests comprised of 5
problems each) the resolution of which implies the construction of first degree equations.

The resolution of these problems implies: a) The possibility to construct a single-
unknown equation directly. b) The construction of a system of two equations (two unknowns). ¢)
The construction of a system of several equations that can be reduced to a system of two equations.
d) The construction of second degree equations that can be reduced to a first degree one by
simplification of terms.

For some problems it is necessary to write and to transform formulaes. Problems
concerning inequations and the the study of numerical functions will not be approached in this
paper.

Errors in the putting into equation process

All the errors observed in the putting into equation process can be classified into the
following categories:
a - Errors in the construction of mathematical correspondences.
b - Errors that concern the concept of equivalence and that of the unknown.
¢ - Errors in the construction of a "calculable” mathematical object.
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a - Errors in the construction of mathematical correspondences.

After reading the problem text students are faced with the construction or with the
identification of useful mathematical functions: a number (given or unknown) corresponds to only
one number (given or unknown). Each of these correspondences is a particular case of a numerical
function in which the algebraic expression is not known. The search for these correspondences is
guided by the necessity to construct one or several equations that will allow to solve the problem.

For example: A person has 120F more than a second person. When they have both
spent 360F, the first person has twice as much money than the second one. How much money did
each person have before making their purchases?

26% of students succeed: y + 120=x; x-360= 2 (y-360) (x represents the money
of the first person and y represents that of the second person). The problem makes reference to
additive processes that unfold in time, in which there are initial states (x and y) which, after the
expense of money (transformation), will correspond to the final states (x-360 and y-360). The
conceptualization of these processes is necessary to construct a correspondence between these
states. For example: the initial state y for the second person will correspond to a state x, greater
(120F more) than the first; the functional relationship remains to be constructed. We observe that a
correspondence (sometimes evident) built correctly in natural language, can drive to an erroneous
numerical function. For example, many students propose x + 120=y instead of x=y + 120

30% of students make errors in the construction of these correspondences and write
false equivalences, for example:  x + 120=360* 2
or a system of equations 120 +x-360=2y ; x-360=y
The next error: X + 120 + y-360= 2x + y clearly shows the meaning of the "summary of the
prohlem text" of the written equation: some students do not make a rupture with natural language.

Sentences are sometimes perceived in an ambiguous manner, for example: One pays a sum
of 1750F with 24 bills of 50F or 100F. How many bills are there of each kind? Some students write
the following equations: 24x= 1750 and 24y= 1750. This particular analysis of the problem leads to
absurd numerical solutions: the students do not check the plausibility of the results obtained.
Written equations do not translate relationships of the problem and thus the meaning of the symbols
x and y shift from the meaning of a number to that of a unit: "bills of SOF and 100F" respectively.

Conclusion: These errors always lead to a false equivalence: it is the written trace
that one analyzes. Therefore, in the analysis of implicit processes of thought it is necessary to go .
beyond the written equations. The identification of relevant correspondences implies the respect of
the fundamental constraint of mathematical functions: only one image. Consequently, there is an
operational invariant: the concept-in-action of mathematical function expressed in terms of
correspondences between sets (modern definition of function). The students have never seen this
definition; a concept-in-action designates implicit operational knowledge.
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b - Errors that concern the concept of equivalence and that of the unknown.

Once pertinent correspondences (contained explicitly or implicitly in the problem
text) are identified, students are faced with mental construction (implicit) and with writing the
equations. The introduction of the "equal” sign establishes a rupture with natural language. Each
equation has, in general, the meaning of an equivalence between magnitudes, and the terms of this
equivalence must therefore respect a constraint of homogerieiiy: to have the same units and the
same meaning.

An equivalence can be constructed: a) By the equality of two functions. b) By the
substitution of given numbers into a function. ¢) By the substitution of given numbers and functions
into another function. The mathematical functions giving origin to a first degree equation -are, in
general, also of the first degree and of one or several variables; for example: y= 3x, y= 5x-20, 3x +

b - 1 - The functional relationship between variables is not constructed.

For example in the problem: One pays a sum of 1750F with 24 bilis of SOF or 100F.
How many bills are there of each kind? From the first sentence one can construct a correspondence:
24 bills corresponds to a sum of 1750F; a numerical function can not be immédiately constructed. It
is necessary first to conceptualize that there is an unknown number x of SOF bills and an unknown
number y of 100F bills; and that the number of bills will total 24, mathematically expressed as: x +
y= 24. Moreover, the total sum (1750) must contain two sums of money: S1 comprised of 50F bills
and S2 of 100F bills (the equation is: S1 + $2= 1750). It is also necessary to construct that S1
corresponds to x number of bills following the numerical function S1= 50 x, similarly $2= 100 y.
Equations that model the problem are constructed from these numerical functions. This cognitive
work is generally implicit. Several students write the following equations:

50x + 100y= 1750 ; 24 (x + y)= 1750 (instead of x + y= 24).

The second equation "summarizes" a correspondence between sets (24 bills corresponds to 1750F):
the function z= 24= x + y (total number of bills) is not constructed. Also, the equation
24(x+y)=1750 does not respect either the homogeneity of the units and the significance of all its
terms, or the homogeneity of the significance of symbols inside a system of equations: x can not be
a "object or a unit" in an equation and a number of objects in the other.

Angther exemple: A rectangular piece of land has a perimeter of 110m. By
decreasing its length 1m and increasing its width Im, its area is increased by 4m2- What were its
initial dimensions?

30% of students succeed: 2x + 2y= 110m, (x-1) (y + 1)=xy + 4m2. An analysis in terms of initial
and final states can also be made for this problem. There is a correspondence between linear
measures and perimeter and there is another correspondence between linear measures and area. The
corresponding numerical functions are formulaes that the student is supposed to know. Some
students write: (x-1) + (y + 1)= 110 + 4.2, In this example 4.2 represents 4m?2: for some students a

O
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length and an area have the same unit. There is therefore a failure in their concept of area and in the
conceptualization of the relationships involved in the problem. In this equation areas and perimeters
are processed indiscriminately: these errors are conceptual. This is similar for the following errors:

D+ +D=110+40orx-1+y+1= 4m?2 or (x-1) + (y + )= xy. These equations are not
equivalences because they do not respect the constraint of homogeneity.

Another exemple: A gardener wants to plant a surface with tulips, in which there
would be 3110 yellow tulips, 2/10 red tulips and 30 black tulips. How many yellow tulips did the
gardener buy? Some students write "x number of yellow tulips; y number of red tulips" and then
the equation; (3/ 10)x + (2/ 10)y + 30= n. In this equation the significance of the unknowns shifts to
that of objects or a unit "tulips" and the numerical fuctions x= (3/10)n and y=(2/10)n are not
constructed. This type of error is very frequent.

b - 2 - Some errors are due to a failure to check the functional relationship between variables.
For the sentence “the length is 20 m greater than the width” many students propose L + 20=1
(instead of L=1 + 20), this equation has the meaning of the "summary of the problem text". To
check the validity of the written equation implies checking the functional relationship between
variables by means of numerical examples: the student (or the expert) will give to-variable 1 a
numerical value (for example10) and then calculate the value of L and verify that "L is 20m greater
than 1". These errors are due to a failure to check: the numerical function underlying the equation is
not constructed.

b - 3 - The homogeneity constraint of units is not respected.

For example: A rectangular field has a perimeter of 5.28Km. Calculate its dimensions knowing that
the length is 220m greater than the width?

Some students, starting from the following equivalences (often implicit):

y=x+220and 5.28=2(x +y)

write: 5.28=2 (2y +220).

The homogeneity of units is not respected; in most cases these errors are due to a failure to check.

Conclusion: The equation concept, taking the meaning of equivalence between
magnitudes, is an operational invariant in the putting into equation process. The numerical
function concept necessary for the construction of equivalences is also an operational invariant.

In the construction of numerical functions and equivalences, thought is guided by the
principle: the respect of the homogeneity of terms that constitute the equation. This principle is
also an operational invariant.
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¢ - Errors in the construction of a "calculable” mathematical object.

The construction of correspondences, numerical functions and equivalences is
motivated and guided by the necessity to construct an equation or a system of equations (in
examples analyzed here). Furthermore the writing of a mathematical object will be the outcome of
the putting into equation process because it allows the calculation of the numerical value of an
unknown or several unknowns: it is, in this sense, a "calculable” mathematical object. The choice to
construct a particular mathematical object implies conceptualization of the mathematical properties
(of this object) conceming the possibility to provide the type of numerical result that one seeks to
calculate. The construction of a "'calculable” mathematical object is an operational invariant.

¢ - 1 An erroneous substitution in the construction of a single-unknown equation. The
construction of a single-unknown equation often implies the substitution of an unknown by a
function. For example in the problem: A rectangular field has a perimeter of 5.28Km. Calculate its -
dimensions knowing that the length is 220m greater than the width? The substitution of the function
is made, sometimes, in an erroneous manner: one constructs a function y=f(x) and then f(x) takes
the place of x instead of y; it is a conceptual error, for example:

y= x+220 , 5,28=2(x+y) which leads to 5.28=2 (x+220+2y)

one ends thus with a two-unknown equation: a mathematical object non relevant for the solution. A
failure to check can lead to the following error:

y=x+220; 5.28=2 (x + y) leads to 5.28=2 (2y + 220)

¢ -2 - Errors that concern the concept of system of equations

c-2-a) The writing of two identical equations. For example in the problem: One pays a sum of
1750F with 24 bills of SOF or 100F. How many bills are there of each kind? Some students write a
system with two identical equations: 50x + 100y= 1750; 50x + 100y= 1750.

In their concept of system of equations students lack mathematical knowledge that would allow
them to decide if the written system makes it possible (or not) to calculate the unknowns. The
former is a conceptual error.

¢ -2 -b) Impossibility to solve an ""unusual” system of equations .

Students from 9th and 10th grade know the single-unknown equation and the system of two
equations as tools for solving word problems. A large number of students are able to solve systems
of equations, but only if they are written according to the "usual” script: ax + by=c¢; a'x + b'y=c¢";
they then apply quasi algorithmic procedures to solve them. These students stop after the
construction of an "unusual” system of equations, for example:

y=X+2x+4x +8x ; y=x+(x +22) + (x +44) + (x + 66)

or y=(3/10)x , (2/10)x +y+30=x or L=1+220; 5280=21+2L

Some of these systems can be solved by the substitution of an equivalence into the other. The use of
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the linear combination method can imply the rewriting of an equation by means of an algebraic
transformation well known by students (for example L= 1 + 220 becomes L-1= 220). This type of
dead-end appears in classes where the teaching is focussed on the resolution of systems of the type:

ax +by=c; a'x + b'y=¢".

¢ -2-c) Dead-end in front of a system of equations the resolution of which mplies algebraic
transformations.

In the algebraic treatment of word problems, the detour behaviour can begin with algebraic
transformations that lead to a mathematical object that one is able to calculate. However, students
often construct equations with several unknowns that they do not transform (in order to put them in
the form that they can process). For example: (x + 5)/ (y + 5)= 9/ 11; (x-5)/ (y-5)= 2/ 3

or x+y=50y +2=29;z+x=35

Conclusion: These errors show: First, a limited conceptualization of the
mathematical properties of written equations (concerning the possibility to provide the type of
numerical result that one seeks to calculate). Second, the absence of the checking process.

Cognitive model of the putting into equations process.

Our cognitive model is the functioning of the schtme which governs the putting into
equation process. Some aspects of this model can be found in Cortes A. (1994).

The resolution of word problems has a purpose: the calculation of the numerical
value of unknown magnitudes by means of the construction of a relevant mathematical object: a
single-unknown equation (if one wants to calculate the value of only one unknown); a system of
two equations (if one wants to calculate the numerical value of two unknowns); a function; an
inequation... The choice to construct a particular mathematical object implies the conceptualization
of the mathematical properties of this object. The construction of a "calculable" mathematical
object is a principle that guides thought in the resolution of word problems. This principle provides
a means to select relevant mathematical relationships among the whole range relationships.

After reading the problem text, students are faced with constructing or identifying
useful mathematical correspondences: a number (given or unknown) corresponds to only one
number (given or unknown). Each of these correspondences is a particular case of a numerical
function in which the algebraic expression is not known. Consequently, there is an operational
invariant: the concept-in-action of numerical function.

Then, students are faced with the implicit or explicit construction of equations that
have the meaning of equivalences between magnitudes; the introduction of the "equal” sign
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establishes a rupture with natural language. The concept of equivalence is also an operational
invariant. However, the terms of numerical functions and written equations must have the same
units and the same éigniﬁcance and the coherence of the resolution process implies that symbols
have the same significance all through the solution process. Consequently we can define a fourth
operational invariant, a principle: the respect of the homogeneity of equation terms and symbol
significance. This principle guides the transformation of correspondences (natural language) into
numerical functions and allows then the construction of equations as well as the checking of the
validity of these equations: it establishes therefore an essential link between the conceptualization
of reality and mathematical modelization.

Conclusion:

Classifying errors according to the mathematical property violated, allows us to
classify errors that have different scripis into the same caterory. The type of teaching influences the
occurence frequency of certain errors, as well as their script.

The cognitive model that we propose takes into account the most important
conceptual aspects of the putting into equation process. The infuence of the teaching process is not
analyzed in this article, and neither is the checking of the numerical results and other processes.

The construction of a cognitive model of the putting into equation process is
intresting from a theoretical point of view and also from a practical one (e.g. teacher's training).
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A CASE STUDY OF ALGEBRAIC SCAFFOLDING: FROM BALANCE SCALE TO
ALGEBRAIC NOTATION

Jorge Tarcisio DA ROCHA FALCAO'
Universidade Federal de Pernambuco (BRASIL)
Graduate Program in Cognitive Psychology

A experience of introdncing algebra to a group of 11 low-class and poorly-schooled
children from Recife (Northeast of Brazil) by a group of researchers coordinated by the
author is reported in terms of case study. This experience consisted in the proposal of a
didactic sequence covering a semester, and inclnding four sets of activities: introduction of
the nvo-pan balance scale in order to make explicit some basic principles, passage fo
simbolic represemation and introduction of a new contract (represent first, solve later),
“scale-cleaning” using symbolic represemation, and simbolic depuration with rewriting.
Clinical data suggest important acquisitions in terms of a new represemtational tool, for
which the two-pan balance scale has served as preparatory metaphor.

The experience reported here was conducted by the author during the period from August to
early December 1994, in the context of a larger project of assistance to poor children in Recife,
Brazil. This project has been supported by grants from European non-governmental organizations,
- and consists in offering a professional training coupled with school-like activities in language and
mathematics. Professional activities offered include the crafling of marionettes and giant puppets,
bread production in bakeries, artisenal fabrication of candies and formation of waiters (for boys
ouly). The essential aim of the project is to offer these children an alternative to the streets, by
offering them an opportunity of learning a professional tool and having soine school support. The
activities in mathematics mentioned above were conducted by a group of researchers and students of
the Graduate Program in Cognitive Psychology - UFPE, and consisted of three main topics, the first

two having been exaustively negociated with the group: 1. new Brazilian currency (RS, real) and
" decimal number system; 2. algorithms of subtraction and division and 3. introduction to algebra.
Activities concerning topics | and 2 were conducted by two associated researchers, assisted by
graduate students; topic 3 was under the coordination of the author of this report. The group of
researchers was offered complete autonomy in proposing mathematical activities during the
semester; there was no mathematics teacher to “negociate” with, no program needs to cover, no
curricula prescriptions nor specific time-table to take into account. We developed the complete
experience (three topics) in mathematics in 16 meetings that took place once a week, on tuesdays
afternoons, in the rooms of the CECOSNE Fondation at Recife. The group of 11 children (6 boys
and 5 girls) who participated in the experience reported here was heterogeneous both in age (12 to
17 years) and school level (6th grade to high school); this last aspect, by the way, must be considered
cautiously, since high-school students showed poorer level in elementary mathematics in a previous
evaluation than elementary 6™ and 7* grade ones. Only two among all of the children ventured, upon
questioning, to offer a meaning to the word “algebra”: the first one, a clever 15 year-old boy, gt
level at elementary school?, stated that “Algebra... é o bicho!” (local popular slang corresponding
roughly to: Algebra... it's the boogie man!), the other one, a 16 year-old girl, 1% high-school level,
wondered if algebra wasn’t ... uma coisa que tem a ver com asa-delta” (something concerning
hang-gliders [called in Brazilian Portuguese asas-delta (delta-wings) because of their delta-shape]).
We discussed with the group the possibility of starting a set of mathematical activities concerning
algebra, without offering any previous definition of it (in spite of their insistence in having such a
definition). They agreed in starting studying algebra, provided that it wasn’t too boring. We
proposed, in the next meeting, the first of three main sets of activities, all of them described beiow.

! This study was sponsored by grants from FACEPE (Fundagfio de Amparo 4 Ciéncia e Tecnologia) and CNPq
(Consetho Nacional de Desenvolvimento Cientifico ¢ Tecnoldgico).
? In Brazilian public school system, algebra is frequentlly introduced by the end of the 7" grade.
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The experience with algebra covered 10 weekly meetings of aproximately two hours and a half each,
and were all registered by a research assistant.

L. Facing a certain problem and introducing some activities with the two-pan
balance scale
1.1. At the first meeting, the following problem was proposed to the group:

Jodo had 5 bags of marbles and 2 more marbles, and his friend Pedro had 3 bags of
marbles of the same type of Jodo's and 6 more marbles. The two boys had, in all, the same
number of marbles. How many marbles were there in each bag?

This problem sparked a lively debate between two blocks of opinion in the group: the first one, under
the leadership of S., a 15 year-old girl, 1 grade/high school, stated that the whole problem was a
trick, since it wasn’t possible to have two people (Jodo and Pedro) owning each one a different
number of bags and extra-marbles and, concomitantly, having the same number of marbles; the
second block of opinion proposed that it was possible to find out the number of marbles, provided
that we were very patient and lucky and tried a lot of possibilities (a small “sub-group” inside this
block of opinion stated that, in fact, we could not find out a precise number, since there wasn’t a
precise operation to do in order to calculate the number of marbles). In spite of this second bloc of
opinion, rione of their members tryed to “patiently” find out the number, and the first meeting was
over without any answer at all.

1.2. At the second meeting, we proposed to postpone the debate about Jodo and Pedro’s problem,
and to start thinking about a series of situations concerning the use of the very familiar two-pan
balance scale. Five basic situations in the two-pan balance scale were then explored and discussed
with the group during this and the next two meetings. It is important to mention that these situations,
represented pictorially in the table 1, were presented to the children with an actual scale. Among the
set of five situations, situations 3 and 4 were especially discussed, since for many of the children they
displayed an inproper, messy set-up, caused by two violations of the two-pan balance scale canonic
lay-out: 1. known weights in both pans (sitnation 3); 2. unknown weights in both pans (situation 4).
The group was then motivated to discuss  strategy of “cleaning” the scale, in order to be able to
find out the unknown weight. A basic theorem-in-action (Vergnaud, 1985) concerning the
fonctioning of the two-pan balance scale (s), with its logical consequence (*), was previously
explicited in the form of a principle : @ [Principle 1] we have to have equal weights in each of the two
pans of the scale in order to have these pans in equilibrium; * [Consequence] if the pans of a two-
pan balance scale are in equilibrium, then there are equal weights ar each pan. By the end of the
fourth meeting, a small sub-group proposed that the right way to proceed, in situation 3, was to take
away the 20g weight in the right pan of the scale; the violation of the basic principle of the two-pan
balance scale was resolved when a complement of the proposition above was produced in the
following terms: we take away 20g from the right pan of the scale, and [Principle 2] we do the same
in the left pan, in order to keep the pans in equilibrium. The (proposital) lack of a 40g weight
forced the group to propose an important complement to the most recent principle: in the absence of
concrete weights to put in the pans of the scale, we can make believe the substitution was done.
Despite this important and consensual achievement, the transfer to situation 4 was not direct and
immediate, since many of the subjects stated that this situation was very different of situation 3: “/n
situation 3, we know the weights, so we can take them away or just to imagine we 've done s0; in
situation 4, we don't know the weight of the corn packages, and we can't do anything upon
unknown things!” (S., 15 year-old girl, 1% grade/high school, the same girl who stated the
impossibility of solving Jodo & Pedro’s problem). The cebate sparked by this restriction was very
interesting and intense. In fact, S. didn’t have a good answer to the important question-asked by a
little 6™ grade 12 year-old boy: “WHY can't you take way one. corn package from each pan if you
know the scale will keep the balance?” The group was then convinced that the principle of taking
weights away (factually or making believe) could be extended to situations where the weight of the
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package was unknown, provided that principles 1 and 2 were respected. Situation 5, a combination
of difficulties of situations 2 and 3, provoked an unexpected discussion on “procedural order” taken
seriously into account by the group: when we have to “clean” known and unknown things in the
scale, by which one we begin: knowns or unknowns? They decided, as a social contract (not strictly
respected in fact), to begin always by known things. Once these two important principles (1 and 2)
explicited .and refined by the group, we started the second set of activities, described below.

Table 1 : Set of basic situations explored in the two-pan balance scale

1

@ Flour
- — 1
l

2. Describing scale dispositions and installing a new contract: represent first, try
to solve later

2.1. At the fifth meeting, the subjects were introduced to a new activity, consisting of representing,
in a diagram prepared by the author (see reproduction in figure 1 below), a new set of situations in
the two-pan balance scale. This activity was presented to the children as a scale-dictation, in analogy
with the familiar situation of class-room dictations; they were asked to represent, in the paper, four
situations proposed in a real scale, using known and unkoown weights. These situations
‘corresponded to the following algebraic structures: x +a=b; 2x+y+a=b+y+x; 2x+y+z+
a=2x+y+b andx+y +tatb=y +c¢

‘At the very begining of this activity, a new contract (Brousseau, 1988; Schubauer-Leoni & Perret-
Clermont, 1985; Schubauer-Leoni, 1986; Perret-Clermont, 1992) was for the first time introduced:
avoid trying to find out the value corresponding to the unknown weigth, trying instead to initiaily
represent the - situation, with the aid of the scale-diagram. Although everybody gently and
immediately seemed to agree, we soon realized how difficult it is, in fact, to postpone the resolution
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Figure 1: diagram praposed as auxiliary paper and of a problem or problem-like situation, “wasting
pencil tool for the representation of scale-situations  fime with drawing and writing”, as one of the
L R J subjects said. It is very comprehensible: they
] were under another implicit, older and stronger
contract which states that rhe longer someone
spends in finding the solution of a school-
problem, the more “burro” (stupid) he/she is.
As a consequence, the new contract (concerning the priority of representation over resolution) had
to be re-taken plenty of times. We also discussed the meaning of the equal sign ( =) in the auxiliary
diagram above mentioned. They accepted without discussion that this equal sign, in this particular
context, did not represent an identity between the content of each scales’s pans, but rather the
equitibrium of the pans caused by the equality of weights in each pan of the scale. The third and
equally important point of discussion concerned the representation of unknown weights in the
diagram. Since the group was especially worried about time-spending in_the task-solving procedure,
it was easy to negociate the introduction of a simplified representation for the known and unknown
entities in the scale: we proposed small geometric figures (circles, triangles and squares) to represent
the packages (unknown weights), and numbers to represent known weights. This very question of
codification generated a very important debate, since one of the subjects (A., 6™ grade) decided to
use squares as simbolic representation for unknowns, and represented by the same symbol (the
square) different packages (corn and flour) put on the scales’s pans. This proposal was criticized by
L. (1* grade, high school), who called the attention of the group to the non-differenciation of
different entities in A.’s representation. L. proposed, then, an alternative representation where
different packages were coded by different symbols (squares and a triangle: see figure 2 on the next
page). A. argued that “the teacher had allowed the use of any symbol to represent mknown things™
[what is true] , and he had the right of choose the squares, but he and the rest of the group was easily
convinced to adopt L.’s representation. We explaned, then, our third principle: {Principle 3] different
things must be represemted by different symbols in the scale diagram. Later, this principle was
refined afier a debate caused by some troubles in the representation of a complex scale lay-out:
sugar, salt, salt, corn, known weight (first 1-an), corn, sugar, known weight (second pan). One of the
subjects decided, coherently with principle 4, to utilize three different symbols in the left pan, but
violated the correspondence food package <> symbol in the right pan (triangle for sugar in one pan,
square for sugar in the other). The debate ted the group to refine principle 3 with an addendum in the
following terms: [Principle 4]: once a symbol is choosen for representing something wiknown, this
symbol caimmot he used to represent another unknown entity, and the relation previously established
hetween symbol and thing represented cannot be changed in the context of a particular scale-
diagram. The group was, then, able to represent many situations proposed in the two-pan balance
scale; we passed, then, to another set of activities, consisting of representing not more scale-
dispositions, but problems, in the same scale-diagram.

2.2. The first problem proposed” is reproduced below:

Amanda and Tiane like to collect samples of stationery. Amanda’s collection is composed by 70
especially-decorated individual sheets of paper; Tiane has 10 individual sheets and two similar
blocks of sheets given by her father. We know that the two girls have the same number of
individual sheets of stationnery. How many sheets of stationnery are there in each of Tiane’s
blocks?

The transposition from scale representation to problem representation required the group to work
upon two aspects: {. To discuss once more the contract giving temporal priority to representation
over problem solving procedure; 2. To forget the two-pan balance scale itself, and start considering
the derivated diagram, since the group was facing situations concerning other equalities (e.g.,

3 This problem is part of a set of problems proposed originally by Lins Lessa, 1994,and adopted in this study.
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number of stationnery sheets) than weight equality. After having represented these problems, we
passed to another group of activities, consisting of solving the situations represented (values of
unknowns in scale dispositions and solutions in problems) through “scale cleaning-np”.

Figure 2: Scales’s disposition and respective A. and L. propositions of representation.

Scale’s original disposition

+20 = 40.‘*‘ | OA+ -, _ 0+ [N |

Representation proposed by A. Representation proposed by L.

3. The “scale cleaning-up” activity and symbolic depuration

This set of activities covered the three last meetings, and consisted of a symbolic
transpositign from motoric, effective activity of taking away packages from the pans of an actual
scale to an activity of eliminating icons (representing unknowns) graphically, taking into acount’
principles 1 and 2 (Figure 3 reproduce the activity of scale cleaning proposed by R., 5" grade). All
representations previously proposed were then given back to their proposers in order to be “cleaned-
“up”. A four-point procedural sub-contract was stablished for the cleaning-up procedure: 1. Make
explicit which icon-unknown would have its value searched; 2. Keep in mind principles 1 and 2; 3.
Rewrite the new scale set-up after each round of scale cleaning-up; 4. Reach a final line of rewriting
with the format icon = value. The piece of protocol on the next page (Figure 3) illustrates well
these points. After this activity, many problems were then proposed in order to be represented and
then cleaned-up. It's important to mention that, at this phase of new problems, the auxiliary diagram
proposed was first reduced to a simplified form, and then reduced to the equal sign, as shown in
figure 4. We tried, at this phase, avoid mentioning scales explicitly, talking instead about principles
(especially principles | and 2) aplicable to representational situations. We also discussed ways of
refining representational propositions, and the group was able to propose two main refinements: 1.
Substitution of a series of icons of one type by a numeric coefficient folowed by the icon (e.g., 30
instead of [0 L0 O ); 2. Substitution of the connector “and” by the operator -+ (plus), in the
transposition from natural language to representational language. We proposed to add a final
procedural item of contract in combination with the two itens above: representing the familiar icons
(triangles, circles and squares) by some specific letters, those at the end of the alphabet: X, Y and Z.
This substitution was very well accepted by some of them, since they realized that their
representations had rejoined those in mathematics books. The whole work was then completed by an
invitation to bring to class their algebra books, in order to work over some algebraic expressions and
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problems considered very difficult by themselves. Because of time limits, only one meeting (the last
one) was dedicated to this activity, during wich S. was also invited to reconsider the problem of Jodo
and Pedro, in order to verify if it had a solution: after having represented the problem, she easily
cleaned it up and solved it, with a shy smile of satisfaction. '

Figure 3 : reproduc(ion of R.'s protocol

Figure 4 : simpliﬁéa(ion of auxiliary representational diagrams offered during the didactic
sequence

Auxiliar diagram 1 Auxiliar diagram 2 Auxifiar diagram 3
Scale-disposition dictations and Problem dictations and New problems, cleaning-up
cleaning-up cleaning-up and rewriting

4. Discussion

This work represents an incursion of the author in the terrain of mid-term didactic projects
directed to school-like groups, without the methodological comfort provided by experimental and
quasi-experimental designs.

A certain set of ideas presided the didactic sequence reported here in its main traits. First of
all, the idea of an epistemological gap between arithmetic and algebra (Vergnaud et al., 1988). This
gap (which dialectically shares epistemological relevance with the idea of continuity (Da Rocha
Falcdo, 1992; 1993)), can assume many aspects, one of the most important concerning explicit and
implicit contracts undergoing arithmetic and algebraic procedures. In fact, the arithmetic procedure
implies an immediate search for solution, represented by the calculation of intermediate values in
order to reach a final answer. Algebraic procedure, differently, postpone the -very activity of
solution’s search and begins by a formal transposition from empirical domain or natural language to
an specific representational system. Because of this, much en&gy was directed in the didactic
sequence presented here to the negociation and installation of a new contract: represent first, try to
solve later. .

Symbolic representation is a key psychological aspect in the development of algebra and
many other conceptual fields (Vergnaud, 1990) in mathematics because of two points: first, it is not
a result or superstructure of operational structures, as proposed in the context of Piagetian theory
(Piaget, 1970; 1975) but rather a constituent of concepts, with operational invariants and situational
links that gives socially shared meaning to knowledge (Vygotsky, 1985)); second, it opens to a
particular individual a wide range of symbolic cultural tools that, as cultural amplifiers (Bruner,
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1972), enables one to access new instances of conceptual construction. So, representations provide
metaphors that can be useful as pedagogical tools in the context of an effort of didactical
engineering (Artigue, 1988); these metaphors help in amplifying pre-existing schemes (Vergnaud
op.cit.), since they provide semantic links between structured knowledge and new pieces of
information. In this process of enrichment of meaning, a quite important psychological sub-process is
represented by the explicitation of theorems-in-action (Vergnaud,1994), upon which are established
many practical competences exercised in daily life. The proposal of the two-pan balance scale
represents an effort of offering a metaphor of algebraic equivalence between equations, based in the
conservation of a pre-stablished fonctional equality between each side of an equation. The
construction of meaning for the equivalence of equations (essential aspect for the comprehension of
algebraic algorithms) is initially connected to the familiar idea of equilibrium, in the context of a
culturally familiar artifact, the balance-scale. This idea of equilibrium is frequently poorly explicited,
although people can make a competent use of a two-pan balance scale in order to sell or buy fish in
Brazilian popular markets; nevertheless, equilibrium as theorem-in-action is based upon two
explicitable principles (see section 2. As a metaphor, the balance-scale offers a context of cultural
fonctionning where complex mathematical concepts (algebraic equivalence and algorithmic
manipulation) can be initially rooted in competences and theorems-in-action (Schliemann and cols,
1992), enriching pre-existing schemes. The balance-scale also offers a support for symbolic
representation, which semantically and syntactically sets the fondations for the introduction of
algebraic formalisms. This is one of the reasons why we have passed, very quickly, from the actual,
concrete balance-scale to a scale-diagram and to an even more abstract diagram (figure 4). This
passage is also important because of a central point concerning the use of metaphors in general: if it
is valuable to introduce metaphors in the effort of scheme enrichment, it is equally important to leave
them behind as soon as possible, in order to avoid an undesirable over emphasis on the scaffolding,
50 to speak, at the expense of hiding the architectural structure one is interested in analyzing. I other
words, the concept of algebraic equivalence can not be reduced to the idea of balance on a two-pan
balance-scale. 1 would finally say, quoting once more G.Vergnaud, that *(...) symbolic systems can
be “conceptual amplifiers” (...), provided we never forget that they can be misteading, that their use
raises specific difficulties, and that they are not the real thing in mathematics” (Vergnaud, 1987,
p.232). _
The reflection above leads to the last point to be discussed here: what did the children learn
* after this semester-long work? Did they understand algebraic equivalence? Did they build up the
concept of algebraic variable? Was the passage from principle 2 to algebraic script-algorithm of
equation processing sucessfull? Is the competence shown in algebraic problem solving at the last
meeting indicative of effective scheme improvement? These are complex and important questions.
First of all, scheme improvement cannot be assimilated to the simplistic, false dichotomy of being or
"not being able to do something; a scheme, as an invariant organization of behavior for a certain class
of situations, made of operational invariants, goals, expectations, anticipations, rules of action and
inferences, cannot be reduced to a frozen competence disconnected from its socio-cuitural ecology,
its situated meaning (Meira, 1993). It is time for cognitive psychology to leave behind “general’
problem solvers”, universal algorithms and “central” heuristics: cognition is not an intransitive,
decontextualized entity (Lave, 1988). So, there is not an easy and unique answer for the question
that opens this paragraph: a careful, multi-task and long-term evaluation must be done in order to
assembly elements of answer. Nevertheless, clinical data immediately available seems to allow the
following two points in terms of possible achivements due to the didactic sequence reported here:
1. A new contract (represent first..) was established; it does not mean that other contracts were
simply substituted, but we seem to have succeed in negociating their social allowance for a new one.
2. A new representatlonal tool (the diagram), their two operational principles and procedural sub-
principles are now available for a certain class of problems.
These two points touch the very core of a new, incipient and workable scheme, upon which
the pedagogigal effort of teaching the basics of algebra goes on.
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THE ABSOLUTE VALUE IN SECONDARY SCHOOL. A CASE STUDY OF
"INSTITUTIONALISATION" PROCESS.

Marie-Jeanne Perrin-Glorian
Equipe DIDIREM, Université Paris 7

Abstract

The present research intends to study the process of "institutionalisation®, i.e. all that the teacher
uses 1o give 1o the mathematical knowledge of the students a status according to what is expected by
the institution at this grade of school, and to identify relevant variables on the side of students and on
the side of teachers, in relation with the knowledge at stakes. Here the knowledge is the absolute
value. We analyse the change in the French curriculum, the choices of two teachers, and we compare
the same lesson done by the same teacher, in the same week, for 2 different classes : a "good class"
and a "weak class", we look for differences in the students'work, differences in the discourse of the
teacher. An effect of the differences in the knowledgre of students and in their work is that the same
lesson of the teacher can be a clarification for some of them and an abstract discourse getting very few
links with their own activity for others.

1. Problematics and methodology

1.1.The problem

In our previous researches (1990, 1991, 1993), we identified from observations of classes and
interviews with teachers and students, some phenomena especially perceptible in "weak" classes,
namely : : )

- something like an opposition between a logic of learning and a logic of success : the desire of
getting a short-range success for the students may impede learning and long-range-success ; it looks

like the teacher gives to the students the ways to solve exercices instead of obtaining a real learning
from them.

- the difficuity to find a balance between the construction of the sense of the mathematical concepts
and the acquisition of basic mechanisms as algorithms

- the inclination of teachers to reduce mathematical teaching to teaching of algorithms.

Those phenomena are related to contrainsts (time, students themselves who ask for algorithms,
the need for the teacher to get some successful results for the students and so on) and lead to the "no-
learning" of some students. The contrainsts affect especially institutionalisation (Brousseau 1987),
namely all that the teacher uses to give to the students’ mathematical knowledge a status according to
what is expected by the institution at this grade of school.

This process of institutionalisation is on the teacher's responsability. It takes various forms and
appears on several occasions in the class : during the lecture, conclusions of problem solvings,
remarks, recalls, but also for instance through the choice made by the teacher of the exercices given,
especially for evaluation.

A very important point is the articulation between this institutionalisation and the sense actually
involved by the students during activity of problem solving. Even if students use with sense in
problem solving some tool that we can identify as a mathematical concept, the choices for the teacher
are quite tightened : without institutionalisation, most of the students remember only the context of an
activity and cannot use the same concept to solve another problem, but after the lesson, when
definitions and formalisms are given, we may often observe a loss of sense for some students.

For example, on the one hand, after an activity to learn fractions from sharing rectangles, some
students think that they learned to share rectangles, so it is not surprising if they did not use those
Tfractions to deal with lengths for instance, but, on the other hand, after the lesson, when fractions are

“written with numbers, we can observe errors like "one sixth is the double of one third" and so on.

The present research intends to study this process of "institutionalisation" and to identify relevant
variables on the side of students and on the side of teachers, in relation with the knowledge at stakes.

O
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On the side of the knowledge, we study its place in the curriculum, in handbooks (which knowledge
is aimed to, what types of exercices are offered, what relationships with other knowledge in the same
grade, in previous grades, in future grades) and the evolution of this place. We study also the choices
of the teachers : organization of their teaching, types of exercices, evaluation...

On the side of students, we pay attention to the links they make between problem solving and the
teacher's lesson : we try to identify the knowledge used by students in problem solving, by
themselves or with the mediation of the teacher, how this knowledge is modified by interactions
between students or under the influence of the teacher. We also pay attention to home work, the way
students prepare the tests, how they learn for these tests and by these tests and we search a possible
relationship between specific successful problem solving for instance and global success during the
school year. .

1.2. Methods

In order to do this study, we have chosen to make some cases studies by observing several
classes on the same mathematical topic. We are collaborating with a sociologist to study the
interaction of cognitive and social factors.

We have chosen the 10th grade (15-16 years old) because it is in France the first year of "lycée”
(10th to 12th grades) and the last year before orientation into scientific, literary or economic sections.
We have taken into account three variables : the mathematical topic, the teacher and the class.

We selected two mathematical topics that are new at this level : the absolute value (including the
absolute value function) and homothety. The first one is a bit marginal in the curriculum at this level.
The second one has a more important place : it is an opportunity to use the vectoricl calculus which
has been introduced two years before, about translation but only with addition : the multiplication of a
vector by a number is new in this class.

For the teacher, one variable which we selected is his experience : for the mathematical topics
selected, we planed to observe teachers who are used to teach in lower grades and others who are
used to teach in higher grades with the hypothesis that the first ones will be more attentive to the
consolidation of previous attainments and the second ones to the preparation of future knowledge.

For the class, we intended to observe the same teacher in two classes of the same grade but not
with the same knowledge : one considered as a "good" class and one as a "weak” class.

We have got observations in the classes, students'tests, interviews with teachers and with
students... ‘

The research is still in progress and here we present one topic : the absolute value (analysis of the
new curriculum, choices of 2 teachers) and the observation of one lesson of the same teacher in two
classes of different levels.

2. The teaching of the absolute value '
2.1. A new presentation of the absolute value in the French curriculum.
2.1.1. The classical teaching of this topic before 1990.

In the precedent curriculum, the term "absolute value” was introduced (up to 1986) in the 6th
grade in the same time as relative numbers : it was defined as the number without the sign, namely a
relative number has a sign and an absolute value, a number and its opposite have the same absolute
value. In the 6th and 7th grades, it was used to express the rules of operations bn relative numbers,
but it was (up to 1988) actually studied and used on and after the 8th grade (13-14 years old), with
regard to relative numbers and points marking on a graduate line, but also functions (that were
introduced on the 8th grade too), solutions of equations.

It was introduced and treated from a numeric and an algebraic point of view. The definition of Ixl
was given in one of the following ways: "the positive number among X and -x",or "IxI=xifx20
and Ixl = -x if x < 0." It was used to make some exercices a littie more difficult, for instance
resolution of equations and inequations. We found in 8th grade exercices like
*Find all the real numbers x such thatIxl<3 ;1 <Ixl<2;IxI>x;xl<x;lx-11<2;

12x+91 < 3,5 : 14x-5] = 3". Sometimes, it was required to place these numbers on a graduate line.

MC 2—175



There were sometimes more difficult exercices even in 8th grade, like :
"Calculate the rational numbers x such that %I =2"or "I%)’% <2

"Find all the x such that Ix2-4} + Ix-2| = 0", "lix-1-11 = 1", "llx-1I-1l < 1"
"Interpreting absolute values as distances between points on a graduate line, find x such that Ix-2| +
Ix-31 = 5", Ix-2I + [x-3] > 2".
The notion of function was introduced in this grade and we found also exercices like :
"Consider the function f definedbyf: R — R f:x — [x-2I :
1) Calculate f(2) ; f(-5,5) ;f(%) 1(0) 5 f(-1)
2) Let x be a real number superior or equal to 2. Compare real numbers (x-2) and Ix-2|

Prove that the real number 3,5 is the image by f of one and only one x superior or equal to 2 ; find
this x.

Same question fo'r% 1 55;1

3) Let x be a real number inferior to 2. Compare then real numbers (x-2) and [x-2)
Prove that the real number 3,5 has one and only one antecedent inferior to 2 ; determine this
antecedent.

Same question for% 155 1.

4) Is the function [ a bijection from R onto R* 7"

In the 10th grade, the properties of the absolute value were restated at the same time as
approximations, but in the exercices on approximations, expressions with inequalities were more
used than the absolute value. Nevertheless, there was a large use of the absolute value in the exercices
about functions : " Study and draw the graph of the functions f(x) = I-2x2+5x+3|

f(x) = x2-IxI ; f(x) =V14-9x1 ; {(x) = VX1 ; [(x) = VIx+2x 4l ; f(x) = V2xHx-10 " ...

However, the official instructions and commentaries on the curriculum of 10th grade precised
since 1982 about the absolute valuc : "the essential point is to be able to interpret Ib-al as the distance
between the points a and b, relations such that Ix-2l<1 or Ix-2l<1/100 with intervals the centre of
which is 2, to be able to do some simple majorations using the triangular inequality... The sudy of
some piecewise affine functions is a reasonable objective. Other examples accumulating absolute

values, as the study of the fuction Ix-Ix- If or the solution of the equations lIxI-3] + I2+Ixll = 1 or |%?|

= \/(2:(+5)2 are dependant on gratuitous technics and can do nothing but repulse students.”

2.1.2. The new curriculum

The absolute value caused a lot of errors for students many years after its introduction (see for
example Duroux, 1983 or Chiarugi, Fracassina, Furinghetti, 1990). In particular, students hardly
accept that Ixl may be -x, and when they have to study Ix-2I, they distinguish the cases x>0 and x<0,
These errors séemed to be related to the early definition of the absolute value as the number without
sign. So this notion has been considered as difficult and of no real use for this grade, and now,
students (the first were those who began secondary school in 1986), meet the absolute value for the
first time in the 10th grade (since 1990), as a distance on the real line and as a particular function (the
theme of functions is important for this grade and it is also new : before, there are linear and affine
functions but the notion of function is no longer introduced in the first years of secundary school).
Exercices like those above have disappeared from 8th grade, we now find some of them in the 10th
grade. Some others cannot be offered even in this grade because there is no longer definition of
function, bijection and so on and the only functions composed with an absolute value that are now to
be studied in this grade are of the type Ix-al + b.

In the new handbooks, the absolute value is defined as the distance between x and O. The
distance between numbers is said to be the usual distance between the points getting these numbers as
abscisses on a graduate line : "the largest minus the lowest"). Some handbooks define la-bl as d(a,b)
before defining lal as the-particular case where b = 0. They don't speak of invariance of distance by
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translations to justify that the two definitions given for Ix| when x=a-b are the same. According to the
official instructions, the links between absolute value and definitions of intervals are reinforced,
equations and inequations like Ix-al =b or Ix-al <b are first solved in a geometric way.
Does this new curriculum allow to avoid the difficulties described above ? [tis difficult to know.
We have some informations by the evaluation made by APMEP! (1991). But as the competences
expected from students at the end of 10th grade are quite low, there are few questions about the
absolute value. The relationship between absolute values and distances secms better. Nevertheless,
students succeed the translation from distances into absolute value for the definition of intervals the
center of which is positive but the other cases and the translation in terms of inequalities are not yet
mastered : among 1800 students, ' '
- 86% can tranlate d(x;7) < 3 in Ix-71 < 3 but 48% only can tranlate the samein4<x<10;
-42% can tranlate 1Xx+5l < 1 in